Rotational Dynamics

Physics 1425 Lecture 19

Rotational Dynamics

- Newton's First Law: a rotating body will continue to rotate at constant angular velocity as long as there is no torque acting on it.
- Picture a grindstone on a smooth axle.
- BUT the axle must be exactly at the center of gravityotherwise gravity will provide a torque, and the rotation will not be at constant velocity!

How is Angular Acceleration Related to Torque?

- Think about a tangential force F applied to a mass m attached to a light disk which can rotate about a fixed axis. (A radially directed force has zero torque, does nothing.)
- The relevant equations are:

$$
F=m a, a=r \alpha, \tau=r F .
$$

- Therefore $F=m a$ becomes

$$
\tau=m r^{2} \alpha
$$

Newton's Second Law for Rotations

- For the special case of a mass m constrained by a light disk to circle around an axle, the angular acceleration α is proportional to the torque τ exactly as in the linear case the acceleration a is proportional to the force F :

$$
\tau=m r^{2} \alpha \longleftrightarrow F=m a
$$

The angular equivalent of inertial mass m is the moment of inertia $m r^{2}$.

More Complicated Rotating Bodies

- Suppose now a light disk has several different masses attached at different places, and various forces act on them. As before, radial components cause no rotation, we have a sum of torques.
- BUT the rigidity of the disk ensures that a force applied to one mass will cause a torque on the others!
- How do we handle that?

Newton's Third Law for a Rigid Rotating Body

- If a rigid body is made up of many masses m_{i} connected by rigid rods, the force exerted along the rod of m_{i} on m_{j} is equal in magnitude, opposite in direction and along the same line as that of m_{j} on $m_{i j}$, therefore the internal torques come in equal and opposite pairs, and cannot contribute to the body's angular acceleration.
- It follows that the angular acceleration is generated by the sum of the external torques.

Moment of Inertia of a Solid Body

- Consider a flat square plate rotating about a perpendicular axis with angular acceleration α. One small part of it, Δm_{i}, distance r_{i} from the axle, has equation of motion

$$
\tau_{i}=\tau_{i}^{\mathrm{ext}}+\tau_{i}^{\mathrm{int}}=\Delta m_{i} r_{i}^{2} \alpha
$$

- Adding contributions from all parts of the wheel
$\tau=\sum_{i} \tau_{i}^{\mathrm{ext}}=\left(\sum_{i} \Delta m_{i} r_{i}^{2}\right) \alpha=I \alpha$
- I is the Moment of Inertia.

Calculating Moments of Inertia

- A thin hoop of radius R (think a bicycle wheel) has all the mass distance R from a perpendicular axle through its center, so its moment of inertia is

$$
I=\sum_{i} \Delta m_{i} r_{i}^{2}=M R^{2}
$$

- A uniform rod of mass M, length

L, has moment of inertia about one end

$$
I=\int_{0}^{L} x^{2}(M / L) d x=\frac{1}{3} M L^{2}
$$

Mass of length $d x$ of rod is $(M / L) d x$

Disks and Cylinders

- A disk: mass M, radius R, is a sum of nested rings.
- The red ring, radius r and thickness $d r$, has area $2 \pi r d r$, hence mass $d m=M\left(2 \pi r d r / \pi R^{2}\right)$.
- Adding up rings to make a disk,

$$
I=\int_{0}^{R} r^{2} d m=\int_{0}^{R} r^{2}\left(2 M / R^{2}\right) r d r=\frac{1}{2} M R^{2}
$$

- A cylinder is just a stack of disks, so it's also $1 / 2 M R^{2}$ about the axle.

Parallel Axis Theorem

- If we already know $I_{C M}$ about some line through the CM (we take it as the zaxis), then I about a parallel line at a distance h is
- $\quad I=I_{\mathrm{CM}}+M h^{2}$
- Here's the proof:

$$
\begin{aligned}
& I=\sum_{i} m_{i} \vec{r}_{i}^{2}=\sum_{i} m_{i}\left(\vec{r}_{i}^{\prime}+\vec{h}\right)^{2} \\
& =\sum_{i} m_{i} \vec{r}_{i}^{\prime 2}+2 \vec{h} \cdot \sum_{i} m_{i} \vec{r}_{i}^{\prime}+M \vec{h}^{2} \\
& =I_{\mathrm{CM}}+M h^{2} \quad\left(\text { Since } \sum_{i} m_{i} \vec{r}_{i}^{\prime}=0 .\right)
\end{aligned}
$$

Moment of inertia / about perpendicular axis through A

- We prove it for a 2D object-the proof in 3D is exactly the same, taking the line through the CM as the z-axis.

Clicker Question

We found the moment of inertia of a rod about a perpendicular line through one end was $\frac{1}{3} M L^{2}$.
Use the parallel axis theorem to figure out what it is about a perpendicular line through the center of the rod.

A $\frac{1}{3} M L^{2}$
B $\frac{7}{12} M L^{2}$
C $\frac{1}{2} M L^{2}$
D $\frac{1}{4} M L^{2}$
E $\frac{1}{12} M L^{2}$

Clicker Answer

We found the moment of inertia of a rod about a perpendicular line through one end was $\frac{1}{3} M L^{2}$.
Use the parallel axis theorem to figure out what it is about a perpendicular line through the center of the rod.

A $\frac{1}{3} M L^{2}$
B $\frac{7}{12} M L^{2}$
C $\frac{1}{2} M L^{2}$
D $\frac{1}{4} M L^{2}$
E $\frac{1}{12} M L^{2}$
The moment of inertia about the CM is less than about any other parallel axis-the mass is closer to the axle on average.

Perpendicular Axis Theorem

- For a 2D object (a thin plate) the moment of inertia I_{z} about a perpendicular axis equals the sum of the moments of inertia about any two axes at right angles through the same point in the plane,

$$
I_{z}=I_{x}+I_{y}
$$

- Proof:

$$
I_{z}=\sum_{i} m_{i} r_{i}^{2}=\sum_{i} m_{i}\left(x_{i}^{2}+y_{i}^{2}\right)=I_{x}+I_{y}
$$

Clicker Question

Given that the moment of inertia of a disk about its axle is $\frac{1}{2} M R^{2}$, use the perpendicular axis theorem to find the moment of inertia of a disk about a line through its center and in its plane.

A $\frac{1}{2} M R^{2}$
B $\quad \frac{1}{4} M R^{2}$
C $M R^{2}$

Clicker Answer

Given that the moment of inertia of a disk about its axle is $\frac{1}{2} M R^{2}$, use the perpendicular axis theorem to find the moment of inertia of a disk about a line through its center and in its plane.

A $\frac{1}{2} M R^{2}$
B $\quad \frac{1}{4} M R^{2}$
C $M R^{2}$
From symmetry, the moment of inertia I_{x} about the x-axis must be the same as I_{y} and from the perpendicular axis theorem, $I_{z}=I_{x}+I_{y}$.

Rotational Kinetic Energy

- Imagine a rotating body as composed of many small masses m_{i} at distances r_{i} from the axis of rotation.
- The mass m_{i} has speed $v=\omega r_{i}$, so $K E=1 / 2 m_{i} r_{i}^{2} \omega^{2}$.
- The total $K E$ of the rotating body (assuming the axis is at rest) is

$$
K=\sum_{i}\left(\frac{1}{2} m_{i} r_{i}^{2}\right) \omega^{2}=\frac{1}{2} I \omega^{2}
$$

