More Rotational Dynamics

Physics 1425 Lecture 20

Clicker Question

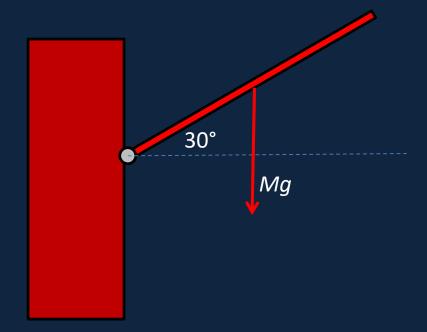
A uniform rod is free to rotate in a vertical plane about a frictionless hinge at one end. It is released from rest at an angle of 30°. ($I = (1/3)ML^2$, $\tau = Mg(L/2)\cos 30°$) The initial downward acceleration of the free end of the rod is:

30°

- A. equal to g
- B. greater than *g*
- C. less than g

Clicker Answer

It's *greater* than g! The moment of inertia about the hinge is $(1/3)ML^2$, the torque is $(MgL/2)\cos 30^\circ$, so the acceleration is given by $\tau = I\alpha$, $\alpha = (3g/2L)\cos 30^\circ$, the far end accelerates at $L\alpha = (3g/2)\cos 30^\circ > g$.



Falling coins

Rotational Kinetic Energy

- Imagine a rotating body as composed of many small masses m_i at distances r_i from the axis of rotation.
- The mass m_i has speed $v = \omega r_i$, so $KE = \frac{1}{2}m_i r_i^2 \omega^2$.
- The total KE of the rotating body (assuming the axis is at rest) is

$$K = \sum_{i} \left(\frac{1}{2} m_i r_i^2\right) \omega^2 = \frac{1}{2} I \omega^2$$

Torque Power

• If a net torque τ is acting on a rotating body, the net power is the rate of change of rotational energy

$$\frac{d}{dt}\left(\frac{1}{2}I\omega^2\right) = I\omega\frac{d\omega}{dt} = I\omega\alpha = \omega\tau \text{ (recall } \tau = I\alpha)$$

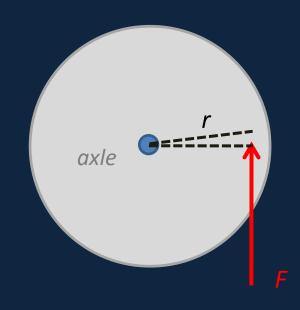
- So the rate of working of the torque, power = $\tau \omega$, its value x the angular velocity.
- Total work done over some time period is

$$\int \tau \omega dt = \int \tau \frac{d\theta}{dt} dt = \int \tau d\theta$$

• This is just like $\int Fdx$ in linear motion.

Work Done by a Torque

• Suppose the torque is a force F acting at a distance r from the center as shown. If the disk turns through an angle $d\theta$, the force acts through a distance $ds = rd\theta$ so does work $Fds = Frd\theta$.



• But $\tau = rF$, so the work $Fds = Frd\theta = \tau d\theta$

Force x distance = torque x angle

A Familiar Item...

- A roll of toilet paper has diameter 0.1m, which happens also to be the length of one sheet.
- What is the angle in radians subtended at the central line of the roll by one sheet in the outside layer?
- A. 1
 - B. 2
 - C. 0.5
 - D. π
 - E. $1/\pi$

A Familiar Item...

- A roll of toilet paper has diameter 0.1m, which happens also to be the length of one sheet.
- What is the angle *in radians* subtended at the central line of the roll by one sheet in the outside layer?
- It's about 2 radians:

On a Roll...

- This roll (0.1 m diameter, 0.1 m sheets) rolls across the table, unwinding three sheets per second.
- Give its CM velocity, and the angular velocity about the CM in radians/sec.

A. 0.3, 6

B. 0.3, 3

C. 0.6, 6

D. 0.3, 3π



On a Roll...

- This roll (0.1 m diameter, 0.1 m sheets) rolls across the table, unwinding three sheets per second.
- Give its CM velocity, and the angular velocity about the CM in radians/sec.

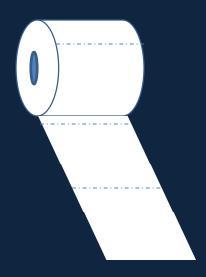
A. 0.3, 6

B. 0.3, 3

C. 0.6, 6

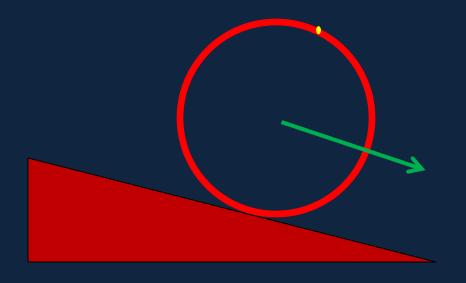
D. 0.3, 3π

Remember $\omega = vr$, and three sheets in one second is 6 radians—almost a complete revolution.



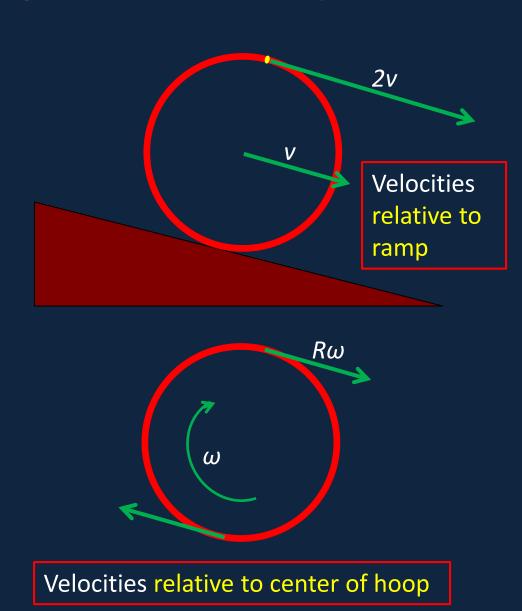
Clicker Question

- A hoop is rolling down a ramp (without slipping) at v m/sec.
- How fast is the point on the hoop furthest from the ramp moving?
- A. *v* m/sec
- B. 2*v* m/sec
- C. 4*v* m/sec



Hoop Rolling Down Ramp

- If there's no slipping, the point on the hoop in contact with the ramp is at rest—the hoop is at that instant rotating about that point.
- So if the center is moving at v, the "top" point is moving at 2v.
- Relative to the center, all points are moving at speed Rω tangentially.
- Hence, since the bottom's at rest: $V = R\omega$
- The "no slip" condition.



Total Kinetic Energy of Rolling Hoop

- Suppose as usual the hoop is made of many small masses m_i and the mass m_i is moving at \vec{v}_i . Then the total KE is $\sum \frac{1}{2} m_i \vec{v}_i^2$.
- This total kinetic energy depends on both the translational motion (the center of the hoop is moving) and the hoop's rotation about the center.
- How do we sort this out?

Separating Translational and Rotational Kinetic Energies: Details

- Suppose we have rigid body we represent as a collection of masses m_i , with individual velocities \vec{v}_i .
- Let's suppose the CM is moving at \vec{v}_{CM} , so the total linear momentum is \vec{M} \vec{v}_{CM} , \vec{M} being the total mass.
- To separate out the rotational motion, we'll write the individual velocities $\vec{v}_i = \vec{v}_{CM} + \vec{u}_i$: so \vec{u}_i is velocity of m_i relative to the CM.
- Then the total kinetic energy is

$$\sum_{i} \frac{1}{2} m_{i} \vec{v}_{i}^{2} = \sum_{i} \frac{1}{2} m_{i} \left(\vec{v}_{\text{CM}} + \vec{u}_{i} \right)^{2} = \frac{1}{2} M \vec{v}_{\text{CM}}^{2} + \vec{v}_{\text{CM}} \cdot \sum_{i} m_{i} \vec{u}_{i} + \sum_{i} \frac{1}{2} m_{i} \vec{u}_{i}^{2}$$

$$KE = \frac{1}{2} M \vec{v}_{\text{CM}}^{2} + \frac{1}{2} I_{\text{CM}} \omega^{2}$$

• Because relative to the CM $\sum_{i} m_i \vec{u}_i = \frac{d}{dt} \sum_{i} m_i \vec{r}_i = 0$, $\vec{u}_i^2 = r_i^2 \omega^2$.

Total Energy: the **Bottom Line**

- In case the last slide was too much, what you
 really need is that the total kinetic energy of a
 moving, rotating object is a sum of two terms:
- Translational KE, the same as if all the mass is moving with the velocity of the center of mass, and
- Rotational KE, about the center of mass:

$$KE = \frac{1}{2}M\vec{v}_{\rm CM}^2 + \frac{1}{2}I_{\rm CM}\omega^2$$

How Fast Does a Hoop Roll Down a Ramp?

Assuming no slipping, so

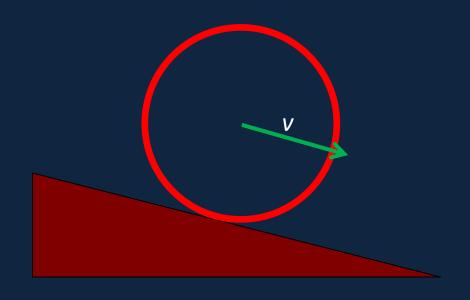
$$v = R\omega$$

The total kinetic energy at an instant:

$$KE = \frac{1}{2}mv^{2} + \frac{1}{2}I\omega^{2}$$

= $\frac{1}{2}mv^{2} + \frac{1}{2}(mR^{2})\omega^{2}$
= $\frac{1}{2}mv^{2}$.

- If it's rolled down through height h from a standing start, mv² = mgh, so v = √(gh)
- For a frictionless sliding mass,
 ½mv² = mgh, so v = √(2gh):
 faster!



The hoop takes longer to get down than a low-friction sliding block, because the same loss in potential energy has to supply BOTH translational *KE* and rotational *KE* for the hoop.

Ramp Race

A hoop, a solid cylinder and a solid sphere roll down the same ramp from a standing start. Who clocks the fastest time?

- A. The hoop
- B. The solid cylinder
- C. The solid sphere
- D. It depends on the sizes and/or masses.

Ramp Race

A hoop, a solid cylinder and a solid sphere roll down the same ramp from a standing start. Who clocks the fastest time?

The sphere wins: its mass is on average closer to the axis of rotation, so it has less rotational *KE* compared with translational *KE*.

- A. The hoop
- B. The solid cylinder
- C. The solid sphere
- D. It depends on the sizes and/or masses.

Note: for the sphere $I = (2/5)mR^2$ solid cylinder $\frac{1}{2}mR^2$, hoop mR^2 .

A New Look for $\tau = I\alpha$

- We've seen how $\tau = I\alpha$ works for a body rotating about a fixed axis.
- $\tau = l\alpha$ is not true in general if the axis of rotation is *itself* accelerating
- BUT it IS true if the axis is through the CM, and isn't changing direction!
- This is quite tricky to prove—it's in the book
- And $\tau_{CM} = I_{CM}\alpha_{CM}$ is often useful, as we'll see.