More Angular Momentum

Physics 1425 Lecture 22

Michael Fowler, UVa

Torque as a Vector

- Suppose we have a wheel spinning about a fixed axis: then *a* always points along the axis—so
 da / *dt* points along the axis too.
- If we want to write a vector equation

 $\vec{\tau} = I\vec{\alpha} = Id\vec{\omega}/dt$

it's clear that the vector $\vec{\tau}$ is parallel to the vector $d\vec{\omega}/dt$: so $\vec{\tau}$ points along the axis too!

BUT this vector *t*, is, remember made of two other vectors: the force *F* and the place *r* where it acts!

More Torque...

- Expressing the force vector *F* as a sum of components $\vec{F}_{||}$ ("fperp") perpendicular to the lever arm and \vec{F}_{\parallel} parallel to the arm, it's clear that only \vec{F}_{1} has leverage, that is, torque, about O. $F_{\rm I}$ has magnitude Fsin θ , so $\tau = rF\sin\theta$.
- Alternatively, keep \vec{F} and measure *its* lever arm about O: that's $r\sin\theta$.

Definition: The Vector Cross Product

 $\vec{C} = \vec{A} \times \vec{B}$

- The magnitude *C* is *AB*sin θ , where θ is the angle between the vectors \vec{A}, \vec{B} .
- The direction of \vec{C} is perpendicular to both \vec{A} and \vec{B} , and is your right thumb direction if your curling fingers go from \vec{A} to \vec{B} .

The Vector Cross Product in Components

• Recall we defined the unit vectors $\hat{i}, \hat{j}, \hat{k}$ pointing along the x, y, z axes respectively, and a vector can be expressed as $\vec{A} = A_x\hat{i} + A_y\hat{j} + A_z\hat{k}$

• Now $\hat{i} \times \hat{i} = 0$, $\hat{i} \times \hat{j} = \hat{k}$, $\hat{i} \times \hat{k} = -\hat{j}$,... • So

$$\vec{A} \times \vec{B} = \left(A_x\hat{i} + A_y\hat{j} + A_z\hat{k}\right) \times \left(B_x\hat{i} + B_y\hat{j} + B_z\hat{k}\right)$$

$$=\hat{i}\left(A_{y}B_{z}-A_{z}B_{y}\right)+\ldots$$

Vector Angular Momentum of a Particle

- A particle with momentum \vec{p} is at position \vec{r} from the origin O.
- Its angular momentum about the origin is

$$\vec{L} = \vec{r} \times \vec{p}$$

 This is in line with our definition for part of a rigid body rotating about an axis: but also works for a particle flying through space.

Viewing the x-axis as coming out of the slide, this is a "right-handed" set of axes: $\hat{i} \times \hat{j} = +\hat{k}$

Angular Momentum and Torque for a Particle

- Angular momentum <u>about the origin</u> of particle mass *m*, momentum \vec{p} at \vec{r} $\vec{L} = \vec{r} \times \vec{p}$
- Rate of change:

$$\frac{d\vec{L}}{dt} = \frac{d\vec{r}}{dt} \times \vec{p} + \vec{r} \times \frac{d\vec{p}}{dt} = \vec{r} \times \vec{F} = \vec{\tau}$$

• because

$$\frac{d\vec{r}}{dt} \times \vec{p} = \vec{v} \times m\vec{v} = 0.$$

Torque about the origin

Kepler's Second Law

As the planet moves, a line from the planet to the center of the Sun sweeps out equal areas in equal times.

- In unit time, it moves through a distance \vec{v} .
- The area of the triangle swept out is ½rvsinθ (from ½ base x height)
- This is $\frac{1}{2}L/m$, $\vec{L} = \vec{r} \times \vec{p}$.
- Kepler's Law is telling us <u>the</u> <u>angular momentum about the</u> <u>Sun is constant</u>: this is because the Sun's pull has *zero torque* about the Sun itself.

The base of the thin blue triangle is a distance v along the tangent. The height is the perp distance of this tangent from the Sun.

Guy on Turntable

- A, of mass *m*, is standing on the edge of a frictionless turntable, a disk of mass 4*m*, radius *R*, next to B, who's on the ground.
- A now walks around the edge until he's back with B.
- How far does he walk?
- A. 2π*R*
- B. 2.5π*R*
- C. 3π*R*

Guy on Turntable Catches a Ball

- A, of mass *m*, is standing on the edge of a frictionless turntable, a disk of mass 4*m*, radius *R*, at rest.
- B, who's on the ground, throws a ball weighing 0.1m at speed v to A, who catches it without slipping.
- What is the angular momentum of turntable + man + ball now?
- A. 0.1mvR
- B. (0.1/3.1)mvR
- C. (0.1/5.1)mvR

Guy on Turntable Walks In

- A, of mass *m*, is standing on the edge of a frictionless turntable, a disk of mass 4*m*, radius *R*, which is rotating at 6 rpm.
- A walks to the exact center of the turntable.
- How fast (approximately) is the turntable now rotating?
- A. 12 rpm
- B. 9 rpm
- C. 6 rpm
- D. 4 rpm

Reminder: Angular Momentum and Torque for a Particle...

- Angular momentum about the origin of particle mass *m*, momentum \vec{p} at \vec{r} $\vec{L} = \vec{r} \times \vec{p}$
- Rate of change:

$$\frac{d\vec{L}}{dt} = \frac{d\vec{r}}{dt} \times \vec{p} + \vec{r} \times \frac{d\vec{p}}{dt} = \vec{r} \times \vec{F} = \vec{\tau}$$

because

$$\frac{d\vec{r}}{dt} \times \vec{p} = \vec{v} \times m\vec{v} = 0.$$

Lots of Particles

- Suppose we have particles acted on by external forces, and also acting on each other.
- The rate of change of angular momentum of one of the particles about a fixed origin O is:

$$dL_i / dt = \vec{\tau}_{i \text{ int}} + \vec{\tau}_{i \text{ ext}}$$

The internal torques come in equal and opposite pairs, so

$$d\vec{L} / dt = \sum_{i} d\vec{L}_{i} / dt = \sum_{i} \vec{\tau}_{i \text{ ext}}$$

Rotational Motion of a Rigid Body

• For a collection of interacting particles, we've seen that $d\vec{L} / dt = \sum_{i} \vec{\tau}_{i}$

the vector sum of the applied torques, \vec{L} and the $\vec{\tau}_i$ being measured about a fixed origin O.

- A rigid body is equivalent to a set of connected particles, so the same equation holds.
- It is also true (proof in book) that even if the CM is accelerating,

$$d\vec{L}_{\rm CM} / dt = \sum \vec{\tau}_{\rm CM}$$

Angular Velocity and Angular Momentum Need not be Parallel

- Imagine a dumbbell attached at its center of mass to a light vertical rod as shown, then the system rotates about the vertical line.
- The angular velocity vector \vec{o} is vertical.
- The total angular momentum \vec{L} about the CM is $\vec{r}_1 \times m\vec{v}_1 + \vec{r}_2 \times m\vec{v}_2$.
- Think about this at the instant the balls are in the plane of the slide—so is *L*, but it's not vertical!

When *are* Angular Velocity and Angular Momentum Parallel?

- When the rotating object is symmetric about the axis of rotation: if for each mass on one side of the axis, there's an equal mass at the corresponding point on the other side.
- For this pair of masses, $\vec{r}_1 \times m\vec{v}_1 + \vec{r}_2 \times m\vec{v}_2$ is along the axis.
- (Check it out!)

