More Angular Momentum

Physics 1425 Lecture 22

Torque as a Vector

- Suppose we have a wheel spinning about a fixed axis: then $\vec{\omega}$ always points along the axis-so $d \vec{\omega} / d t$ points along the axis too.
- If we want to write a vector equation

$$
\vec{\tau}=I \vec{\alpha}=I d \vec{\omega} / d t
$$

it's clear that the vector $\vec{\tau}$ is parallel to the vector $d \vec{\omega} / d t$: so $\vec{\tau}$ points along the axis too!

- BUT this vector $\vec{\tau}$, is, remember made of two other vectors: the force \vec{F} and the place \vec{r} where it acts!

More Torque...

- Expressing the force vector \vec{F} as a sum of components \vec{F}_{\perp} ("fperp") perpendicular to the lever arm and $\vec{F}_{\|}$parallel to the arm, it's clear that only \vec{F}_{\perp} has leverage, that is, torque, about O.
\vec{F}_{\perp} has magnitude $F \sin \theta$, so $\tau=r F \sin \theta$.
- Alternatively, keep \vec{F} and measure its lever arm about O : that's $r \sin \theta$.

Definition: The Vector Cross Product

$$
\vec{C}=\vec{A} \times \vec{B}
$$

- The magnitude C is $A B \sin \theta$, where θ is the angle between the vectors \vec{A}, \vec{B}.
- The direction of \vec{C} is perpendicular to both \vec{A}
 and \vec{B}, and is your right thumb direction if your curling fingers go from \vec{A} to \vec{B}.

The Vector Cross Product in

Components

- Recall we defined the unit vectors $\hat{i}, \hat{j}, \hat{k}$ pointing along the x, y, z axes respectively, and a vector can be expressed as $\vec{A}=A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k}$

- Now

$$
\hat{i} \times \hat{i}=0, \hat{i} \times \hat{j}=\hat{k}, \hat{i} \times \hat{k}=-\hat{j}, \ldots
$$

- So

$$
\begin{aligned}
& \vec{A} \times \vec{B}=\left(A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k}\right) \times\left(B_{x} \hat{i}+B_{y} \hat{j}+B_{z} \hat{k}\right) \\
& =\hat{i}\left(A_{y} B_{z}-A_{z} B_{y}\right)+\ldots
\end{aligned}
$$

Vector Angular Momentum of a Particle

- A particle with momentum \vec{p} is at position \vec{r} from the origin O .
- Its angular momentum about the origin is

$$
\vec{L}=\vec{r} \times \vec{p}
$$

- This is in line with our definition for part of a rigid body rotating about an axis: but also works for a particle flying through space.

Angular Momentum and Torque for a Particle

- Angular momentum about the origin of particle mass m, momentum \vec{p} at \vec{r}

$$
\vec{L}=\vec{r} \times \vec{p}
$$

- Rate of change:

$$
\frac{d \vec{L}}{d t}=\frac{d \vec{r}}{d t} \times \vec{p}+\vec{r} \times \frac{d \vec{p}}{d t}=\vec{r} \times \vec{F}=\vec{\tau}
$$

- because

Torque about the origin

$$
\frac{d \vec{r}}{d t} \times \vec{p}=\vec{v} \times m \vec{v}=0
$$

Kepler's Second Law

As the planet moves, a line from the planet to the center of the Sun sweeps out equal areas in equal times.

- In unit time, it moves through a distance \vec{v}.
- The area of the triangle swept out is $1 / 2 r v \sin \theta$ (from $1 / 2$ base \times height)
- This is $1 / 2 L / m, \vec{L}=\vec{r} \times \vec{p}$.
- Kepler's Law is telling us the angular momentum about the Sun is constant: this is because the Sun's pull has zero torque about the Sun itself.

The base of the thin blue triangle is a distance v along the tangent. The height is the perp distance of this tangent from the Sun.

Guy on Turntable

- A, of mass m, is standing on the edge of a frictionless turntable, a disk of mass $4 m$, radius R, next to B, who's on the ground.
A now walks around the edge until he's back with B.
- How far does he walk?
A. $2 \pi R$
B. $2.5 \pi R$
C. $3 \pi R$

Guy on Turntable: Answer

- A, of mass m, is standing on the edge of a frictionless turntable, a disk of mass $4 m$, radius R, next to B, who's on the ground.
- A now walks around the edge until he's back with B. How far does he walk?
$3 \pi R$
His moment of inertia is $m R^{2}$, the turntable's is $2 m R^{2}$. There is zero total angular momentum, so if he walks around with angular velocity ω relative to the ground, the turntable has angular velocity $-\omega / 2$. If he marked the turntable at the point he
 began, he'd reach that mark again after walking $2 / 3$ rds of the way round, as the turntable turned the other way to meet him. When he gets back to B, the turntable has done half a complete turn.

Guy on Turntable Catches a Ball

- A, of mass m, is standing on the edge of a frictionless turntable, a disk of mass $4 m$, radius R, at rest.
- B, who's on the ground, throws a ball weighing 0.1 m at speed v to A, who catches it without slipping.
- What is the angular momentum of turntable + man + ball now?
A. 0.1 mvR
B. $(0.1 / 3.1) \mathrm{mvR}$
C. $(0.1 / 5.1) \mathrm{mvR}$

On the Ball? Answer

- A, of mass m, is standing on the edge of a frictionless turntable, a disk of mass $4 m$, radius R, at rest.
- B, who's on the ground, throws a ball weighing 0.1 m at speed v to A , who catches it without slipping.
- What is the angular momentum of turntable + man + ball now?
A. 0.1 mvR
B. $(0.1 / 3.1) \mathrm{mvR}$
C. $(0.1 / 5.1) \mathrm{mvR}$

The ball thrown from B to A is moving in the direction of the tangent at A , the angular momentum about a point of a particle flying through the air equals $\vec{r} \times m \vec{v}$ and the line of the velocity is perp to the radius ending at A, so the angular momentum of the ball about the disk center is 0.1 mvR .
There is no other angular momentum, so this is shared with the man and the turntable.

Guy on Turntable Walks In

- A, of mass m, is standing on the edge of a frictionless turntable, a disk of mass $4 m$, radius R, which is rotating at 6 rpm .
- A walks to the exact center of the turntable.
- How fast (approximately) is the turntable now rotating?
A. 12 rpm

B. 9 rpm
C. 6 rpm
D. 4 rpm

Guy on Turntable Walks In: Answer

- A, of mass m, is standing on the edge of a frictionless turntable, a disk of mass $4 m$, radius R, which is rotating at 6 rpm .
- A walks to the exact center of the turntable.
- How fast (approximately) is the turntable now rotating?
A. 12 rpm

B. 9 rpm
C. 6 rpm
D. 4 rpm

Initially, the man has moment of inertia $m R^{2}$, the turntable $2 m R^{2}$. Finally, the man has negligible moment of inertia, so the total / decreases by a factor of 2/3, to conserve angular momentum (ther are no external torques) ω increases by $3 / 2$.

Reminder: Angular Momentum and Torque for a Particle...

- Angular momentum about the origin of particle mass m, momentum \vec{p} at \vec{r}

$$
\vec{L}=\vec{r} \times \vec{p}
$$

- Rate of change:

$$
\frac{d \vec{L}}{d t}=\frac{d \vec{r}}{d t} \times \vec{p}+\vec{r} \times \frac{d \vec{p}}{d t}=\vec{r} \times \vec{F}=\vec{\tau}
$$

- because

$$
\frac{d \vec{r}}{d t} \times \vec{p}=\vec{v} \times m \vec{v}=0 .
$$

Lots of Particles

- Suppose we have particles acted on by external forces, and also acting on each other.
- The rate of change of angular momentum of one of the particles about a fixed origin O is:

$$
d \vec{L}_{i} / d t=\vec{\tau}_{i \mathrm{int}}+\vec{\tau}_{i \text { ext }}
$$

- The internal torques come in equal and opposite pairs, so

$$
d \vec{L} / d t=\sum_{i} d \vec{L}_{i} / d t=\sum_{i} \vec{\tau}_{i \text { ext }}
$$

Rotational Motion of a Rigid Body

- For a collection of interacting particles, we've seen that

$$
d \vec{L} / d t=\sum_{i} \vec{\tau}_{i}
$$

the vector sum of the applied torques, \vec{L} and the $\vec{\tau}_{i}$ being measured about a fixed origin O .

- A rigid body is equivalent to a set of connected particles, so the same equation holds.
- It is also true (proof in book) that even if the CM is accelerating,

$$
d \vec{L}_{\mathrm{CM}} / d t=\sum \vec{\tau}_{\mathrm{CM}}
$$

Angular Velocity and Angular Momentum Need not be Parallel

- Imagine a dumbbell attached at its center of mass to a light vertical rod as shown, then the system rotates about the vertical line.
- The angular velocity vector $\vec{\omega}$ is vertical.
- The total angular momentum \vec{L} about the CM is $\vec{r}_{1} \times m \vec{v}_{1}+\vec{r}_{2} \times m \vec{v}_{2}$.
- Think about this at the instant the balls are in the plane of the slide-so is \vec{L}, but it's not vertical!

When are Angular Velocity and Angular Momentum Parallel?

- When the rotating object is symmetric about the axis of rotation: if for each mass on one side of the axis, there's an equal mass at the corresponding point on the other side.
- For this pair of masses,
$\vec{r}_{1} \times m \vec{v}_{1}+\vec{r}_{2} \times m \vec{v}_{2}$ is along the axis.
- (Check it out!)

