Simple Harmonic Motion

Physics 1425 Lecture 28

Force of a Stretched Spring

- If a spring is pulled to extend beyond its natural length by a distance x, it will pull back with a force

$$
F=-k x
$$

where k is called the "spring constant".

The same linear force is
 also generated when the spring is compressed.

Mass on a Spring

- Suppose we attach a mass m to the spring, free to slide backwards and forwards on the frictionless surface, then pull it out to x and let go.
- $F=m a$ is:

$$
m d^{2} x / d t^{2}=-k x
$$

Spring's force

$\underset{\text { xtension } x}{\rightarrow-}$

Solving the Equation of Motion

- For a mass oscillating on the end of a spring,

$$
m d^{2} x / d t^{2}=-k x
$$

- The most general solution is

$$
x=A \cos (\omega t+\phi)
$$

- Here A is the amplitude, ϕ is the phase, and by putting this x in the equation, $m \omega^{2}=k$, or

$$
\omega=\sqrt{k / m}
$$

- Just as for circular motion, the time for a complete cycle

$$
T=1 / f=2 \pi / \omega=2 \pi \sqrt{m / k} \quad(f \text { in Hz. })
$$

Energy in SHM: Potential Energy Stored in the Spring

- Plotting a graph of external force $F=k x$ as a function of x, the work to stretch the spring from x to $x+\Delta x$ is force x distance
- $\Delta W=k x \Delta x$, so the total work to stretch the spring to x_{0} is

$$
W=\int_{0}^{x_{0}} k x d x=\frac{1}{2} k x_{0}^{2}
$$

This work is stored in the spring as potential energy.

Potential Energy $U(x)$ Stored in Spring

- The potential energy curve is a parabola, its steepness determined by the spring constant k.
- For a mass moscillating on the spring, with displacement

$$
x=A \cos (\omega t+\phi)
$$

the potential energy is $U(x)=\frac{1}{2} k A^{2} \cos ^{2}(\omega t+\phi)$

Total Energy E for a SHO

- The total energy E of a mass m oscillating on a spring having constant k is the sum of the mass's kinetic energy and the spring's potential energy:
- $E=1 / 2 m v^{2}+1 / 2 k x^{2}$
- For a given E, the mass will oscillate between the points $x=A$ and $-A$, where

$$
E=1 / 2 k A^{2}
$$

- Maximum speed is at $x=0$, where $U(x)=0$, and

$$
E=1 / 2 m v^{2} \text { at } x=0
$$

Mass Hanging on a Spring

- Suppose as before the spring constant is k.
- There will be an
extension $x_{0}, k x_{0}=m g$, when the mass is at rest.
- The equation of motion is now:

$$
m d^{2} x / d t^{2}=-k\left(x-x_{0}\right)
$$

- with solution

$$
x-x_{0}=A \cos (\omega t+\phi), \quad \omega^{2}=k / m .
$$

The Simple Pendulum

- A simple pendulum has a bob, a mass m treated as a point mass, at the end of a light string of length ℓ.
- We consider only small amplitude oscillations, and measure the displacement $x=\ell \theta$ along the circular arc.
- The restoring force is
$F=-m g \sin \theta \cong-m g \theta$ along
 the arc.

$F=m a$ for the Simple Pendulum

- The displacement along the circular arc is $x=\ell \theta$.
- The restoring force is
$F=-m g \sin \theta \cong-m g \theta=-m g x / \ell$ along the arc.
- $F=m a$ is

$$
d^{2} x / d t^{2}=-g x / l
$$

(canceling out m from both sides!).

Period of the Simple Pendulum

- The equation of motion

$$
d^{2} x / d t^{2}=-g x / \ell
$$

has solution

$$
x=A \cos (\omega t+\phi)
$$

- Here

$$
\omega=\sqrt{g / \ell}
$$

and the time for a complete swing

$$
T=2 \pi / \omega=2 \pi \sqrt{\ell / g} .
$$

The time for a complete swing doesn't depend on the mass m, for the same reason that different masses fall at the same rate.

Reminder: the Conical Pendulum

- Imagine a conical pendulum in steady circular motion with small angle θ.
- As viewed from above, it moves in a circle, the centripetal force being $-(m g / \ell) \vec{r}$.
- So the equation of motion is

$$
d^{2} \vec{r} / d t^{2}=-(g / \ell) \vec{r}
$$

and for the x-component of \vec{r}

$$
d^{2} x / d t^{2}=-g x / \ell
$$

Top View:

The SHO and Circular Motion

- We can now see that the equation of motion of the simple pendulum at small angles-which is a simple harmonic oscillator

$$
d^{2} x / d t^{2}=-g x / \ell
$$

is nothing but the x-component of the steady circular motion of the conical pendulum

$$
d^{2} \vec{r} / d t^{2}=-(g / \ell) \vec{r}
$$

- The simple pendulum is the shadow of the conical pendulum, and click here to see it!

Top View:

The Physical Pendulum

- The term "physical pendulum" is used to denote a rigid body free to rotate about a fixed axis, making small angular oscillations under gravity.
- Taking the distance of the CM
 from the axis to be h, at (small) angle displacement θ, the torque is

$$
\tau=m g h \sin \theta \cong m g h \theta
$$

$\tau=l \alpha$ for the Physical Pendulum

- In the small angle approximation, the equation of motion $\tau=l \alpha$ is

$$
I \frac{d^{2} \theta}{d t^{2}}=-m g h \theta
$$

- with solution

$$
\theta=\theta_{0} \cos (\omega t+\phi)
$$

- and

$$
T=2 \pi / \omega=2 \pi \sqrt{I / m g h} .
$$

- Remember this is $l_{\text {axis }}=I_{\mathrm{CM}}+m h^{2}$!

