More Kinetic Theory of Gases

Physics 1425 Lecture 32

Vapor Pressure and Humidity

- The $\mathrm{H}_{2} \mathrm{O}$ molecules in liquid water strongly attract each other, holding the liquid together. But these molecules are still jiggling around, with a Maxwell speed distribution. This means a fraction of them near the surface are moving fast enough to escape, forming a vapor above the surface.
- In a closed container, with enough water present, an equilibrium situation is reached between escaping and returning molecules.

Water and Vapor in Equilibrium

- In equilibrium in a closed container, the molecules in the vapor have the same average kinetic energy as the air molecules, so exert pressure on the walls of the container proportionate to their numbers.
- This is the saturated vapor pressure. It varies with temperature like $\mathrm{e}^{-a / T}$, not surprising since its origin is molecules fast enough to escape.

Water Vapor Pressure

- At room temperature, saturated vapor pressure is about 2.5\% of atmospheric pressure.
- At $100^{\circ} \mathrm{C}$, it equals atmospheric pressure: this means small bubbles formed in the liquid by fast moving molecules coming together are no longer crushed by the surrounding atmospheric pressure, the water boils.
- In mountain resorts like Aspen, water boils at a lower temperature, producing inferior tea.

Relative Humidity and Dew Point

- If water is constantly boiled off in a closed room, there's a limit to how much water vapor the air can hold: it becomes saturated. That limit depends on the temperature. Attempts to add more water result in condensation on the walls, fog formation, etc. At this point, relative humidity $=100 \%$.
- Relative humidity =
vapor pressure/saturated vapor pressure
Dew point: temperature at which dew forms-that is, water condenses out as the air cools. (For given vapor pressure, dew point is found from tables.)

Pressure Cooking

- A pressure cooker works at a gauge pressure of about one atmosphere: that is, inside the cooker, pressure is about 2×10^{5} Pascals.
- The vapor pressure of water rises from 1 atm to 2 atm on heating from $100^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$.
- This means that inside the cooker, the boiling water is at $120^{\circ} \mathrm{C}$, cooking times are faster.

Clicker Question

- It's freezing rain outside, $0^{\circ} \mathrm{C}$ and 100% humidity (meaning a vapor pressure of about 600 Pa), the only source of humidity in your drafty house is the outside air (no humidifier or boiling water), the house is at $20^{\circ} \mathrm{C}$ (svp about 2400 Pa).
- What is the relative humidity in the house?
A. 100%
B. 50%
C. 25%

Clicker Question

- A closed cylinder contains water and water vapor in equilibrium at $20^{\circ} \mathrm{C}$ and atmospheric pressure.
- The piston is slowly pushed down until the pressure inside is doubled, all at $20^{\circ} \mathrm{C}$.
- What happened to the water vapor pressure?
A. It doubled
B. It increased, but less than doubling.
C. It stayed the same.
D. It went down.

Van der Waals Equation

- The ideal gas law assumes molecules take up no room and don't interact.
- Van der Waals equation replaces V by $V-b, b$ representing room taken up by molecules (taking $n=1$ mole).
- It replaces P with $P-a / V^{2}$, the molecules' mutual attaction lessens P at the walls.
- Below the critical point, part of the curve is unstable, is replaced by a straight line separating gas and liquid.

These curves are the best fit Van der Waals for oxygen at its critical $T=153 \mathrm{~K}$ and 143K, 163K.

Diffusion

- Suppose we have two boxes, one containing red gas, one air, at room temperature, separated by a partition which we gently (but quickly!) remove.
- Some time later, the gases can be observed to have diffused into each other to some extent.
- But the molecules are moving at about 500 meters per second!
What's taking so long? Watch it
happen here!

Pinball Scenario

- Gases take a long time to mix because an O_{2} molecule, say, moving into N_{2} will bounce around like a ball in a pinball machine-a zigzaggy path.
- Just how much room is there between those molecules?

Clicker Question

- Guesstimate what fraction of the air space air molecules actually occupy in this room.
A. $1 / 100$
B. $1 / 1,000$
C. $1 / 10,000$
D. $1 / 100,000$

Hint: think about relative densities!

Clicker Answer

- The density of air is of order $1 \mathrm{~kg} / \mathrm{m}^{3}$, the density of water—and liquid air—is of order $10^{3} \mathrm{~kg} / \mathrm{m}^{3}$.
- Since liquids are almost incompressible, it's reasonable to assume that their molecules are filling most of the space—pressing against each other.
- We conclude that the same molecules in gas have about 1,000 times more room each, so are separated on average by around 10 diameters.

Mean Free Path

- The mean free path is defined as the average distance a molecule travels between collisions with other molecules.
- Imagine the molecule's straight line path-a collision occurs when another molecule's center is inside a cylinder of radius d centered on that path.
- In traveling a distance ℓ, the molecule "sweeps out" a volume $\pi d^{2} \ell$.

Mean Free Path Continued...

- In traveling a distance ℓ, the molecule "sweeps out" a volume $\pi d^{2} \ell$.

- Remember the average volume per molecule in air is around $1,000 d^{3}$.
- Therefore, the molecule will hit another one on average after traveling ℓ where $\pi d^{2} \ell=1,000 d^{3}$.
- Bottom line: the mean free path ℓ in air is around 300d, where d is the molecular diameter.
\square what the molecular diameter is!

A Random Walk

- To get some idea how far a molecule can progress with a pinball type zigzag path, we begin with the simpest example; a onedimensional random walk, defined as follows:
- I have a fair coin, on average it comes up heads exactly 50\% of the time.
- I take a walk, tossing the coin to determine each step: one step forwards for heads, one backwards for tails.

1-D Random Walk Distance

- Equally likely forwards or backwards, of course, but if you did this many times, what would be your most likely ending distance from the starting point?
- Let's do the math: the first step is displacement x_{1}, = +1 for forwards, -1 for backwards. The other steps are similarly variables $x_{2}, x_{3}, \ldots x_{10}$ all +1 or -1 with equal probability.

1-D Random Walk Distance

- Let's do the math: the first step is displacement $x_{1},=+1$ for forwards, -1 for backwards. The other steps are similarly variables $x_{2}, x_{3}, \ldots x_{10}$ all +1 or -1 with equal probability.
- We're trying to find how far away we get, we don't care which way, so let's find the average squared distance:
- $\left(x_{1}+x_{2}+\ldots+x_{10}\right)^{2}=x_{1}{ }^{2}+x_{2}{ }^{2}+\ldots+x_{10}{ }^{2}+2 x_{1} x_{2}+$ lots of such cross terms.
- On the right hand side, the square terms all equal one, and the cross terms are equally likely positive or negative, so average to zero.

1-D Random Walk Distance

- Average squared distance:
- $\left(x_{1}+x_{2}+\ldots+x_{10}\right)^{2}=x_{1}^{2}+x_{2}^{2}+\ldots+x_{10}^{2}+2 x_{1} x_{2}+\ldots$
- On the right hand side, the square terms all equal one, and the cross terms are equally likely positive or negative, so average to zero.
- Bottom line: if this random walk is repeated many times over, the average squared distance from beginning to end

$$
\overline{\left(x_{1}+x_{2}+\ldots+x_{10}\right)^{2}}=10
$$

The root mean square distance is therefore $\sqrt{ } 10$.

Clicker Question

- After many ten-step random walks, confirming the argument given above, I decide to do a new set of random walks that will on average get me twice as far from the start.
- How many steps long are these new walks?
A. 20 steps
B. 40 steps
C. 80 steps
D. 100 steps

Real Diffusion

- Is more complicated than our 1-D random walk, but not that much!
- The path is made up of a sequence of randomly oriented vectors, let's say all of length ℓ.
- The rms distance r from start to finish is given by

$$
r=\sqrt{\left(\overrightarrow{\ell_{1}}+\overrightarrow{\ell_{2}}+\ldots \overrightarrow{\ell_{N}}\right)^{2}}=\sqrt{N} \ell
$$

- Just as in 1 D , the cross terms $\vec{\ell}_{i} \cdot \vec{\ell}_{j}$ average to zero over many paths.

Finding the Size of Molecules

- When real gases diffuse into each other, the molecules follow many different paths, so our averaging over paths gives a good picture of how far they get: a distance $\sqrt{N \ell}$ in N steps of length ℓ.
- We know from the pressure discussion that O_{2} molecules travel at about $500 \mathrm{~m} / \mathrm{sec}$ in air in this room.
- This means that in time t, they will have moved $v t$ in random steps of length ℓ, that's N steps, $N=v t / \ell$.
- So the actual distance diffused in time t is

$$
r=\sqrt{N \ell}=\sqrt{\frac{v t}{\ell}} \ell=\sqrt{v t \ell} .
$$

Finding the Size of Molecules

- So the actual distance diffused in time t is

$$
r=\sqrt{N \ell}=\sqrt{\frac{v t}{\ell}} \ell=\sqrt{v t \ell}
$$

- This can be measured experimentally! It's found that O_{2} gas under room conditions diffuses around 0.5 cm in one second. This gives a mean free path ℓ about 50 nm , and a molecular size $1 / 300$ of that, from our earlier work. (Not very accurate, but pretty good.)
- This is the way the size of atoms, and Avogadro's number, were first found, by Loschmidt in the 1860's.
- (Avogadro had no idea what his number was!)

Clicker Question

- For still air at atmospheric pressure and $20^{\circ} \mathrm{C}$, an O_{2} molecule on average moves a net distance of 0.5 cm in one second. Assuming no air currents, how far does it get on average in one hour?
A. 18 m .
B. 2.2 m .
C. 1.8 m .
D. 0.3 m .

Clicker Answer

- 0.3 m : it goes as \sqrt{t}.
- Note on homework problem: the book gives an example of ammonia diffusing in air, finds for 10 cm time of 125 secs, makes clear this is order-of-magnitude only.
- BUT in the homework they want a "precise" answer! Just take 125 secs for 10 cm , and use that it goes as \sqrt{t}.

