Physics 142E

Michael Fowler Physics 142E Lec 1. Jan 14, 2009
First we'll go to the course website and review it: WebAssign homework, in-class clickers: 20\% forgiveness.

Syllabus: Dynamics, Fluids, Oscillations and Waves, Sound, Heat and Thermodynamics.
So we start with dynamics: study of motion, and, being physics, we need to be quantitative.

So it's all about making measurements.

Measurements of size and mass from quarks to quasars, of speed from continental drift rates to the speed of light. We need to be able to handle very big numbers and very small numbers easily: we use powers of ten.

The common ones are:

> kilo for 1,000 such as kilometer and kilogram, mega for $1,000,000$ or 10^{6} as in megawatt or megabyte, giga for 10^{9} tera for $10^{12} \quad$ (terabyte storage now easily available).

You may see peta for 10^{15}, but not often.

Going down:

> deci for 10^{-1} as in decibel (otherwise not often used),
> centi for 10^{-2} as in centimeter and centiliter (cl),
> milli for 10^{-3}
> micro for $10^{-6} \quad\left(10^{-6}\right.$ meter is called a micron, $\left.\mu\right)$
> nano for 10^{-9}
> pico for 10^{-12}
and you might come across femto for $\mathbf{1 0}^{\mathbf{- 1 5}}$. (A femtosecond is roughly how long electrons take to go round orbits in atoms.)

The actual units we use are almost always $\mathbf{S I}$, the metric system, also known as MKS for meter, kilogram, second.

The second is now defined in terms of the oscillation frequency of a cesium atom in a particular state, the meter is defined in terms of how far light gets in one second.

Volume is measured in cubic meters, or more conveniently sometimes in ccs meaning cubic centimeters or mls meaning milliliters. These two units are the same!
One liter = 1,000 ccs
and
one cubic meter = 1,000 liters.

Mass is still defined in terms of a standard kilogram, a lump of platinum-iridium in Paris, but this will inevitably be replaced by a definite number of atoms of some kind eventually.

Unit conversion: $\quad 1$ inch $=\mathbf{2 . 5 4} \mathbf{c m}$. Used to be 2.5403.

$$
1 \mathrm{~kg}=2.2 \mathrm{lb} .
$$

One gallon = 3.875 liters.

1 ton (metric) = 1,000 kg (nobody calls it a megagram).

Density of water:

1 liter of water weighs 1 kg.

Conversions: speed will be in meters per second. $60 \mathrm{mph}=60 / 3600$ miles per second, $1 / 60$ miles per second (that's 88 feet). 1 mile $=1.609 \mathrm{~km}=1609 \mathrm{~m}$, so $60 \mathrm{mph}=1609 / 60 \mathrm{~m} \mathrm{sec}^{-1}=27 \mathrm{~m} \mathrm{sec}^{-1}$.

Significant figures: When we say 60 mph, we mean closer to 60 than to 59 or 61 (otherwise, we'd write 60.0 , or 60.00 , etc.) so there's a possible error around 1%.

Now, when converting to meters per second, don't write 26.81666 ..which is what the calculator givesthat extra information is junk! Your answer in any calculation cannot be more reliable than your input data, but your calculator doesn't know that. It's your responsibility to apply commonsense, and to drop meaningless figures.

Powers of Ten: rice grains. 100,000 grains fill a two liter bottle. So that's 50,000,000 grains in a cubic meter.

Estimation: How many grains of rice would it take to fill this room? (About 10^{11} : the room is about 12 meters wide, 20 meters from front to back and average height say 6 meters, so volume 1440 cubic meters, 0.7. E10 rice grains.) 10^{9} ? 10^{10} ? 10^{11} ? 10^{12} ? (Note: That's the same as the number of stars in
our galaxy; and the same as the total number of galaxies in the universe. It's also worth noting that the number of air molecules in a 2 liter bottle is around ten times the number of stars in the universe.)

Estimate: what number is closest to your volume in cubic meters, approximately?
0.075 ? 0.15 ? 0.3 ? 0.5 ? (110 lb person is $0.05 \mathrm{~m}^{3}, 220$ is $0.1 \mathrm{~m}^{3}$)

Estimating the size of the earth: my lecture.

