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Work: Lifting a Box 

The word “work” as used in physics has a narrower meaning than it does in everyday life.  First, it only 

refers to physical work, of course, and second, something has to be accomplished.  Specifically, a force 

does work on an object if the object moves—at least partially—in the direction the force is pushing.    

Let’s look at a couple of examples: If you lift up a box of books from the floor and put it on a shelf, 

you’ve done work, as defined in physics.  But if the box proves too heavy, and you tug at it until you’re 

worn out but it doesn’t move, that doesn’t count as work.  Furthermore, carrying the box of books 

across the room from one shelf to another of equal height doesn’t count either, because even though 

your arms had to exert a force upwards to keep the box from falling to the floor, you did not move the 

box in the direction of that force, that is, upwards.  (This same horizontal displacement of the books 

from shelf to shelf could have been accomplished by the box sliding on a low friction surface at constant 

height, requiring essentially no effort.) 

Think now of this vertical lifting of boxes as being done by a small machine, an electrically driven hoist, 

say, that doesn’t wear out quickly as a human would.  It’s clear that to lift the box twice as high will take 

twice the work, and to raise a box twice as heavy will require twice the effort.  In other words, the 

natural definition of work accomplished by a steady vertical force F raising a weight through a distance d 

is  

work = force × displacement  

With this definition, the natural “unit of work” is the work done be a force of one newton pushing a 

distance of one meter.  In other words (approximately) lifting a stick of butter three feet.  This unit of 

work is called one joule, in honor of an English brewer. (His important contribution—apart from good 

beer—was to establish that heat is a form of energy.)   

1 joule = 1 newton × 1 meter 

Back to the box of books:  if it’s lifted at a steady speed, the force F  is just balancing off gravity, the 

weight mg of the box (otherwise the box would be accelerating:  of course, initially a little more force 

would be needed to get it going, and then at the end a little less, as the box comes to rest at the height 

of the shelf.)   

Bottom line: to raise a mass m vertically through a height h at a constant speed a force mg must be 

supplied, pointing upwards, and it will do work mgh in joules. 
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What about Sliding the Box up a Slope? 
   Suppose that instead of lifting the box directly through height h to get it on the shelf, we push it up a 

gentle slope, of length L, and let’s make it smooth enough that we can ignore friction.  Again, we choose 

a force that just balances off gravity, so the box progresses at a steady speed.   

This force  will be F = mgsinα, so the total work done W =  Lmgsinα = mgh. 

 

Evidently the angle of the slope doesn’t matter: as long as there’s no friction, the work done depends 

only on the height gained.   Obviously, the incline doesn’t even to be at constant slope, because any 

curve can be approximated by a sequence of short stretches each at constant slope, and for each of 

these, the work done depends only on the height gained.   

Of course, the other force on the box—gravity—must be doing work as well, the box is moving in the 

direction of a component of that force. But it’s moving in the opposite direction to the way the force is 

pushing, so with our definition of work as force × displacement, the work done by gravity is negative!   

Gravity is actually absorbing work—storing it.  If we let go of the box, as it slides back downhill this 

absorbed work is released:  now gravity does the same amount of positive work on the box as we did in 

pushing it uphill. 

Potential Energy 
Basically, the work we did in pushing the box uphill has been stored by gravity, the amount is mgh,  

and this amount of work is available for future use:  it is released by allowing gravity to act on the box as 

it comes back down.  This “stored work” is called potential energy.  It’s equivalent to an amount of 

work, so naturally is measured in joules. 

In this case, then  

α 

mg 

F 

L 

To push a box up a frictionless 

slope requires a force  

F = mgsinα, 

so the total work done 

W =  Lmgsinα = mgh. 
h 

mgsinα 

mgcosα 
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energy is the ability to do work 

a formulation that unifies different kinds of energy, as we shall discover.  

One more point: what if we push the box up the slope with a horizontal force, rather than a force 

parallel to the slope?  It’s clear from the definition of work that only the component of F


 in the 

direction of the movement does any work, as the box has no movement in the direction perpendicular 

to the surface.   That is,  ΔW  =  (Fcosθ)Δs. 

 

Expressing Work Done in Terms of the Scalar (or Dot) Product of Vectors 
This combination of vector lengths and the cosine of the angle between them occurs so frequently in 

physics that it is convenient to have a special notation for it.  It is called the scalar product, or dot 

product, of two vectors, and is written with a dot: 

 cosA B AB  
 

 

If we now consider an object tracing some path, with some variable force F


 acting on it throughout, as 

the body is displaced by s


, just as in the example above the force does work W F s  
 

, so the 

total work done by the force going along the whole path is the sum of all these W ’s, 

 W F s F ds    
 

 

writing it as an integral for the limit of taking the path increments small.  

Storing Energy in a Spring 
It’s evident from the general expression for work done by a force along an arbitrary path that for gravity, 

a constant force downwards, W is simply proportional to the height difference between the ends of the 

path, as discussed above in the “box on a slope” section.   

Consider now the work needed to stretch a spring.  We’ll restrict considerations of stretching and 

compressing to the “natural range” of the spring, meaning it goes back to its original length and shape 

when released.  It is found experimentally that within this range springs obey Hooke’s Law, the restoring 

F


 

The work done by a force F


 

acting through a displacement 

s


 in a direction at an angle θ 

to F


, 

ΔW = FΔscosθ 

s


 

 

Fcosθ 
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force exerted by the spring is linearly proportional to the deviation x from the natural length, and of 

course in the opposite direction, back to the natural length: 

Fspring = -kx 

Therefore, to stretch a spring from its natural length L to L + x0 takes work—we’ll denote it by U, that is 

the standard notation for stored energy: 

0

21
0 02

0

( ) .

x

U x F ds kxdx kx


      

This potential energy is available to do work as the spring goes back to its natural length.  It’s worth 

plotting potential energy as a function of extension x: 

 

Notice how the potential energy curve gets steeper and steeper as the extension increases: this is 

because the spring’s restoring force increases with length, so each increment of distance takes more and 

more work. 

The increase in potential energy ΔU on extending the spring from x to x + Δx is: 

 U F x kx x      

From which we see that the force the spring is exerting, F = -kx, is related to the potential energy by  

U(x) 

21
2

U x kx  

Potential Energy U(x) stored in a spring as a 

function of deviation from natural length. 

 x  
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 ( ) ( ) / .F x dU x dx  

Why the Minus Sign? 
Getting the signs straight is a bit confusing at first:  it must be clear whether F means the force applied 

to the spring from outside, or the force the spring itself is exerting on something else.  The best way to 

handle the signs is to think through what’s happening: if an outside force is doing work on the spring, 

the spring’s potential energy is increasing, it’s storing the work being done on it.  If the spring is doing 

work on something else, the spring is depleting its store of potential energy. 

This same equation connecting potential energy and force is clearly also true for gravitational potential 

energy, ( ) ,grav gravU h mgh F mg  , counting upwards as positive, and in fact is true in general: 

we shall soon be looking at the gravitational field well away from the Earth, and will generalize the 

expression for the gravitational potential energy to handle this more complicated situation, where 

( , , )U U x y z will vary in all three directions. 

However, the variation of potential energy with position is still given by the work done on the system to 

move an incremental distance,  

 ( , , )U x y z F s  
 

 

so the opposing force from the system itself is  

 ( , , ) ( / , / , / ).x y zF F F F U x U y U z       


 

These derivatives are partial derivatives: the component of F


in the x-direction, Fx, only does work if 

there is a change in the x-coordinate, so how U changes in that direction relates to the force in that 

direction.  The rule for partial differentiation is that if you’re differentiating with respect to x, you treat y 

and z as if they’re constants.  Visually, that means you’re finding the incremental change in potential 

energy on moving a small distance in the x-direction, so y and z don’t change. 

Energy: Kinetic and Potential 
We know that resting a hammer head on a nail which is partly into a piece of hardwood accomplishes 

nothing.  But if we drop the hammer on to the nail (and our aim is good!) it will do some work—the nail 

will be driven a little into the wood.   We know from Newton’s Laws that this happens because the 

moving hammer has momentum, and hitting the nail slows the hammer down rapidly—so the nail is 

exerting a large force on the hammer, and therefore the hammer exerts a large force on the nail, which 

drives it into the wood.  

Let’s analyze what’s going on in the short interval of time between when the moving hammer first 

contacts the nail and the moment when the hammer comes to rest. We’ll chose coordinates so the 

hammer is moving in the x-direction.   
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At some instant of time, suppose the hammer is exerting force F on the nail, so the nail is exerting –F on 

the hammer. If during a tiny time interval, the nail moves distance dx, the work done by the hammer 

.dW Fdx  

 But at the same time, the nail’s equal and opposite reaction force on the hammer is slowing it down, 

 
dv

F ma m
dt

    

so 

dv dx
dW m dx m dv mvdv

dt dt
    

Now integrate both sides over the period of the impact, to find the total work done on the nail by the 

hammer:  

0
2 21 1

02 2
ov

W dW mvdv mv mv         

where v0 is the speed of the hammer just before impact.  

So the hammer is able to do this amount of work on the nail purely because the hammer  is moving.  

Recall we defined energy as the ability to do work.  We found a mass m raised to a height h had 

potential energy mgh, that’s how much work it could deliver on going back to its original height.  Now 

we’ve found that a mass m moving at speed v can deliver ½mv2 joules as it comes to rest.  This is termed 

its kinetic energy—energy it has purely because it’s moving. 

Kinetic energy of mass m at speed v = ½mv2 

And notice that our proof above doesn’t depend on the deceleration being uniform—it probably isn’t. 

Conservation of Mechanical Energy 
Consider now a block of mass m sliding down a frictionless slope of angle α.   

The accelerating gravitational force down the plane is F = mgsinα,  so when the block slides a small 

distance dx, gravity does work  

 ( sin ) .dW mg dx mgdh   

This gravitational force is of course accelerating the block, /F ma mdv dt  , so  

  21
2

.
dv dx

dW Fdx m dx m dv mvdv d mv
dt dt

      
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 We see that as the block moves through the incremental distance dx, its gravitational potential energy 

is depleted by an amount dW mgdh , but at the same time its kinetic energy is increased by precisely 

the same amount. 

That is to say, an amount of energy dW has been transferred from the block’s potential energy to its 

kinetic energy.  

We define the block’s total mechanical energy  = potential energy + kinetic energy:  this is constant if 

there are no frictional forces present—just gravity and smooth surfaces.   

Summarizing:  21
2

dW mgdh d mv  , so  21
2

0d mv mgh  , 

So if the block slides from h0 to h1, 

2 21 1
0 0 1 12 2

.mv mgh mv mgh    

This is the conservation of total mechanical energy.  We’ve derived it for a block on a smooth slope, but 

our argument would be just as good for a frictionless roller coaster: we’ve established that for every 

little movement on a smooth slope energy is conserved, independent of the angle of slope or the 

direction, and a roller coaster can be represented as a large number of such slopes joined together. 

Conservative and Non-Conservative Forces 
The key to energy conservation with gravitational forces is that if work is done against gravity along 

some path, gravity stores that work as potential energy, it is not lost, and gravity will deliver it back to 

the object on a return path.  The spring is the same way: work done to compress it is stored as potential 

energy, and releases as the spring expands.   These are called conservative forces: they arise from a 

potential energy function, and as discussed previously the force is the negative of the differential of that 

function.  This potential energy is then entered in the expression for the total energy of the system, 

along with kinetic energy, etc., and the total energy is conserved. 

Well, actually, the total mechanical energy is not conserved if there is friction in the system.  It takes 

work to drag a box horizontally across a rough floor, and friction doesn’t store that work to help you 

drag the box back.  Quite the contrary, it’s just as hard to drag it the other way.  So what happened to 

energy conservation?  There is no doubt that total mechanical energy, as defined above, is not 

conserved.  However, careful measurements reveal that heat is generated whenever there is friction.  

Heat is in fact a form of energy:  it’s kinetic and potential energy on a microscopic level, when something 

is hotter, the atoms are jiggling around faster.  This can be dealt with quantitatively, as we’ll see later in 

the course, and when it is we find that in fact total energy is conserved, but the total energy now 

includes the heat generated (not to mention the energy in the squeaky sounds emanating from the 

dragged box, etc.) 
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Work Done by a Conservative Force is Independent of Path Taken from A to B 
This statement is obviously true of gravity: the work done by gravity is the change in potential energy 

along the path, and that’s just mg(hB – hA).  But it must be true of any conservative force, for the 

following reason: suppose it’s false, and the conservative force does more work on an object going from 

A to B via path P1 that via path P2.  Then we can put a ball in a frictionless tube which goes from A to B 

along P1,  returns along P2, and turns smoothly at both A and B to make a continuous tube. Starting from 

A, the force will speed up the ball as it goes to B, then lt will be slowed down on the P2 return—but not 

so much!  The slowing down will be just equal to the speeding up that would have occurred had the ball 

set out along P2—and recall we said the force does more work, so delivers more energy, along P1.  This 

means that after one round trip, the ball is moving faster—and this will go on indefinitely, it will get 

faster and faster!  This of course contradicts one of the basic postulates of physics and life, that you 

can’t get something for nothing, there’s no such thing as a perpetual motion machine.  So the work 

done by a conservative force is independent of path. 

Gravitational Potential Energy Far Above Earth 
We’ve established that close to the Earth’s surface, only vertical movement of an object counted as 

work done against gravity, because the incremental work is F s
 
 , and the force is vertically down, so 

along any path, the change in gravitational potential energy depends only on the net height difference.  

When we move to heights comparable to the radius of the Earth, we can no longer take the gravitational 

force to be constant, it is of course 

2
ˆEGM m

F r
r


 

 

where r̂


 is  a unit vector pointing radially outwards.  Notice it’s still vertically downwards, where now 

by vertically downwards we mean pointing to the center of the Earth.  But this means that lifting 

something, even far above the Earth, only takes work for movement directly away from the center of 

the Earth—sideways motion doesn’t count, just as at the Earth’s surface.  So the potential energy, the 

stored work, still depends only on height difference, but it’s a bit more complicated because gravity gets 

weaker with height, so less effort is required as you get further away.   

To find just how gravitational potential energy varies with height, all we need consider is a path going 

straight up.  We have: 

   
2

.
B B

AA

r r

E E E E
B A

r A Br

GM m GM m GM m GM m
U r U r dr

r r r r

 
      
  

  

 It follows that 

  ,EGM m
U r C

r
   
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where C is a constant of integration, which has to be determined some other way.  In  a sense, this 

constant really doesn’t matter, because we only ever work with changes in potential energy.  In 

considering gravitational potential energy near the Earth’s surface, we wrote mgh where h was 

measured from the floor, say.   But that is an arbitrary choice, and in going to the basement the 

potential energy will of course be negative.  To avoid messing with signs, it’s usually convenient to take 

the zero below any level reached in the situation under discussion.  To repeat: only changes in potential 

energy have any significance, so it really doesn’t matter where you choose zero to be. 

Things look a little different, though, on an astronomical scale.  This potential energy is what an object 

has by virtue of its interaction with the Earth’s gravitational field.  But what about a star in a distant 

galaxy?  Obviously, the Earth’s gravitational field has zero impact on its existence.  To take account of 

this in our definition, we need the potential energy in the Earth’s field to go to zero at large distances—

meaning we should drop the C, and just write 

  .EGM m
U r

r
  

Here’s a picture: 

 

To get used to the idea of negative potential energy, imagine an object far from Earth (say a million 

miles) moving very slowly towards it.  The object’s total energy—kinetic plus potential—will be close to 

zero.   As it falls to Earth, its total energy doesn’t change: it picks up speed, gaining kinetic energy, but its 

potential energy is increasingly negative—in the picture above, it’s sliding down the hill. 

Gravitational potential energy of a 

mass m above the Earth,  

U(r) = -GMEm/r 

Close to the surface, this is (apart 

from the constant term  -GMEm/rE ): 

mgh = mg(r – rE) 

where  

g = GME/rE
2 

mg(r – rE)  - GMEm/rE  

rE r 

U(r) 
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Escape Velocity and Orbital Velocity 
For a spacecraft starting from the Earth to escape entirely, it must have enough kinetic energy to climb 

all the way up the hill in the picture above.  In other words, it must have total energy zero!  That is to 

say, we need 

 21
esc2

E

E

GM m
mv

r
  

with rE the Earth’s radius.   It’s straightforward to check that v = 11 km/sec, approximately. 

It’s interesting to compare this equation with the equation of motion for a circular orbit at the same r.  

(Real orbiting satellites of course have r greater than rE, but for the low ones it’s a small correction.)  

F = ma for a circular orbit at rE is  

 
2

orbit

2

E

E E

mv GM m

r r
  

This is almost the same equation!  It’s easy to check by comparing the two that there is a simple 

relationship between the circular orbital speed and the escape velocity: 

 esc orbit2 .v v  

Power 
From a practical engineering point of view, it’s obviously essential to know how many boxes an hour a 

hoist can raise, or how soon a given pump can get all the water out of the basement.  We need a unit for 

rate of working, also known as power.  

The SI unit of power is one joule per second, and this is called one watt. 

The name commemorates James Watt, the engineer who constructed the first really useful steam 

engine, in the 1760’s.  He invented his own unit of power: the horsepower, to rate his engines.  The 

horsepower is 746 watts.  A good horse can work through the day at about 0.7 horsepower, say 500 

watts (or half a kilowatt).  

What’s your personal wattage?  Consider walking (or running) upstairs.  A typical step is eight inches, or 

one-fifth of a meter, so walking upstairs at a reasonable pace you will gain altitude at, say, three-fifths of 

a meter per second.  Your weight is (put in your own weight here!) 70 kg. (for me) multiplied by 10 to 

get it in newtons, 700 newtons.  The rate of working then is 700 x 3/5, or 420 watts.  You could probably 

double your power by running up, but not for long!  To get an idea of possible human power, world 

champion cyclist Lance Armstrong put out 400 watts for several hours (few people can!). Ordinary 

recreational cycling is in the 100 - 150 watt range. 


