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Zero Acceleration Problems: Forces Add to Zero 

The Law is F ma
 
 :  the acceleration of a given body is given by the net force on that body 

divided by the mass.  But it’s often surprisingly difficult to find the force on a particular body.  

The strategy is to mentally isolate that body, and enumerate the forces acting on it—this is the 

“free body” diagram.  These vector forces must then be added correctly—head to tail—and the 

resulting total force found.  This will give the direction of the body’s acceleration.   

 

We’ll begin with the static situation: no acceleration.  For example, we can find the tension in 

the ropes below by noticing that the total force on the know where the ropes come together 

must be zero, since the know isn’t moving.  We draw a “triangle of forces” , the sides parallel to 

the corresponding ropes.  The angles in this triangle are therefore determined by the angle of 

slope of the ropes, so with simple trig the ratio of T to mg an be found.   Notice that  the force 

vectors must all point the same way going around the triangle.  Otherwise, they won’t add to 

zero.  This also works for side ropes at different angles, it’s just more complicated. 

 

 

 

 

The knot where the three ropes  meet is not 

moving, so the three tension forces acting on 

it must add as vectors to zero: see “triangle 

of forces” on right. The sides of the triangle 

are parallel to the corresponding ropes, so 

the tension can be calculated given the 

weight and the angles.   
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For a block at rest on a slope, the upward force of the slope’s surface on the block must exactly 

counterbalance the block’s weight mg.  This force from the slope has two components: the 

normal force N, meaning the force perpendicular to the surface resulting from the springiness of 

the surface, the weight has compressed it slightly and it’s pushing back, and the frictional force f 

preventing the weight from sliding down the slope.  

 

From the triangle of forces (all going round the same way, and therefore adding to zero!) one 

can find N, f  in terms of mg, since the angles of the triangle are determined by the slope.  

 

 

 

Block at Rest on Slope 

If the block remains at rest, 

the three forces acting form a 

triangle as shown.  The angle 

of slope is sufficient to 

determine N, f given mg. 
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A steady velocity situation is of course the same as a static one: there’s no acceleration, so the 

vector total of forces acting on the body must be zero.  Take the case of a sled  

 

 

 

being pulled using a rope at a fixed angle as in this diagram.  Separating the force from the 

ground into normal and frictional components, we have a quadrilateral of forces. Since the sled 

is moving, 
Kf N  (the coefficient of kinetic or sliding friction).  This means that given the 

angle of the rope, the tension needed to maintain speed can be found.  (Write out the equations 

for vertical and horizontal components.) 

Pulling Sled at Steady Velocity 

If the sled is moving at 

constant velocity, the total 

force on it is zero: the four 

forces add to zero as shown.   
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Object Accelerating:  Forces Add to Mass × Acceleration 

 

Consider now a block accelerating as it slides down a slope, with frictional resistance 
Kf N .  

The acceleration vector is directly down the slope, the frictional force directly  up the slope:.   

 

 

 

The three force vectors no longer add to zero, they add to ma


.  To solve this problem, equate 

the force components parallel to the slope, then those perpendicular to the slope. 

Block Sliding down Slope 

If the block is sliding down, 

the three forces acting add up 

to ma, where a is the 

acceleration down the slope, 

as shown. 
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If a road going around a bend is suitably banked, the component of the normal force pointing 

towards the center of the curve will contribute to the necessary v2/r acceleration.  If the road is 

not banked, the centripital acceleration is generated entirely by sideways friction, and especially 

on wet roads this can be problematic. 

 

 

 

However, for a given angle of banking, equating mv2/r to the horizontal component of the 

normal force determines v: so it only works perfectly for one speed, the “design speed’ of that 

stretch of road, and at that speed you could make it round the curve on a sheet of ice. But for 

speeds anywhere near the design speed, less frictional force is required on a banked road. 

Car on Curved Banked Road at Design Speed 

At the design speed, there will 

be no sideways friction.  Note 

the normal force is now 

greater in magnitude than the 

weight.  
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For a given coefficient of (static) friction, there is a maximum speed before the car deviates from 

the circular path.  

Here is the diagram for F ma
 
 :  

 

 

 

Actually, if 1S   (realistic for some tires) and the road is banked at 45 degrees, the maximum 

safe speed, according to this analysis, increases without limit.  (Try drawing the vectors!)  

However, we’ve ignored the possibility that the car might begin to roll up the banking.  

 

 

 

 

 

 

Car on Curved Banked Road at Maximum Speed 

At the maximum speed, 

sideways friction f = μSN.  To 

solve the problem, find and 

equate the horizontal and 

vertical components. 
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For a car accelerating uphill, the external force in F ma
 
  causing the acceleration is the 

frictional force acting uphill, minus the component along the slope of the weight. 

 

The dashed vector is the total force from the surface on the car, this vector plus mg


 gives ma


.  

The force from the seat on the driver would be in exactly the direction of the dashed vector.  

Problem Solving Strategy 

It’s all about solving F ma
 
  for a particular body.  The first thing is to figure out which body, 

and see what you can say about its acceleration: you might not know its magnitude, but you 

probably know its direction.  If it’s going in a circle at constant speed, you know it’s accelerating 

towards the center.  If it’s going in a straight line, the acceleration must be along  that line.  (Of 

course, there are trickier cases: a car picking up speed as it goes around a bend, a planet in an 

elliptical orbit, etc.)  

Now you enumerate the forces on the body, and use 1 2 3F F F F ma   
    

.  By this I mean 

draw a diagram with the forces drawn as vectors, with the directions correct (you know normal 

forces are always perpendicular to the surface, friction along the surface) and try to represent 

this equation, taking for example three forces, as a head-to-tail vector sum equaling the 

ma


vector, as in the examples shown above.  Don’t represent the vectors in terms of their 

components until you can see how they add up: this will give you a clearer picture of what’s 

going on, without the clutter.  Only then, to do actual calculations, put the vectors in terms of 

their components  in two directions at right angles, and write, say, 
x xF ma , etc. 

Car Accelerating up an Incline 

The frictional force from the road 

is pushing the car uphill.  The total 

force of the road on the car is of 

course N + f,  the dotted green 

vector above. 
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