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Today’s Topics 

• Electric fields in and near conductors 

• Gauss’ Law 



Electric Field Inside a Conductor 

• If  an electric current is flowing down a wire, 
we now know that it’s actually electrons 
flowing the other way.  They lose energy by 
colliding with impurities and lattice vibrations, 
but an electric field inside the wire keeps 
them moving. 

• In electrostatics—our current topic—charges 
in conductors don’t move, so there can be no 
electric field inside a conductor in this case.  



Clicker Question 

• Suppose somehow a million electrons are 
injected right at the center of a solid metal 
(conductor) ball.  What happens? 

A. Nothing—they’ll just stay at rest there. 

B. They’ll spread throughout the volume of ball 
so it is uniformly negatively charged. 

C. They’ll all go to the outside surface of the ball, 
and spread around there. 



Clicker Answer 

• Suppose somehow a million electrons are injected 
into a tiny space at the center of a solid metal 
(conductor) ball.  What happens? 

They’ll all go to the outside surface of the ball, and 
spread around there. 

As long as there are charges within the bulk of the 
ball, there will be an outward pointing  electric 
field inside the ball, which will cause an outward 
current. (Imagine uniform distribution: Picture the 
total electric force on one charge from all the 
others within a sphere centered at the one, this 
sphere partially outside the conducting sphere.) 



Clicker Question 

• A solid conducting metal ball has 
at its center a ball of insulator, 
and inside the insulator there 
resides a completely trapped 
positive charge.  

• After leaving this system a long 
time, is there a nonzero electric 
field inside the solid metal of the 
conductor? 

A. Yes 

B. No 
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Clicker Answer 

• At the instant the charge is 
introduced, there will be a 
momentary radial field, negative 
charges will flow inwards, 
positives outwards, to settle on 
the surfaces: 

• There will be nonzero electric 
field within the insulator, and 
outside the ball, but not inside 
the metal.  

• Draw the lines of force! 
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Electric Field at a Metal Surface 
• A charged metal ball has an electric field at 

the surface going radially outwards. 

• Any electrostatically charged conductor 
(meaning no currents are flowing) cannot 
have an electric field at the surface with a 
component parallel to the surface, or current 
would flow in the surface, so 

• The electrostatic field always meets a 
conducting surface perpendicularly. 

• Note: if there was a tangential field outside—and of 
course none inside—you could accelerate an electron 
indefinitely on a circular path, half inside! 

 



Conducting Ball Put into External 
Constant Electric Field 

• The charges on the ball will 
rearrange, meaning electrons 
flow to the left, leaving the 
right positively charged. 

• Note that in the electrostatic 
situation after the charges 
stop moving, the electric field 
lines meet the surfaces at 
right angles. 

• The sphere is now a dipole! 

• a 



Field for a Charge Near a Metal Sphere 

Note: it looks like some field lines cross each other—they can’t!  This is a 3D picture. 

http://www.electrostatics3d.com/IMAGES/Sphere_Charge3D.jpg


Dipole Field Lines in 3D 

• There’s an analogy with 
flow of an incompressible 
fluid: imagine fluid 
emerging from a source at 
the positive charge, 
draining into a sink at the 
negative charge. 

• The electric field lines are 
like stream lines, showing 
fluid velocity direction at 
each point. 

• Check out the applets at  

 

http://www.falstad.com/vector2de/ ! 

http://www.vislab.uq.edu.au/research/molecular_modeling/index.html
http://www.falstad.com/vector2de/


“Velocity Field” of a Fluid in 2D 
example:  surface wind vectors on a weather map  

• Imagine a fluid flowing out between 
two close parallel plates.  The fluid 
velocity vector at any point will point 
radially outwards.  

• For steady flow, the amount of fluid 
per second crossing a circle centered 
at the origin can’t depend on the 
radius of the circle: so if you double 
the radius, you’ll find v down by a 
factor of 2:   
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Velocity Field for a Steady Source in 3D 

• Imagine now you’re filling a deep pool, with a 
hose and its end, deep in the water, is a porous 
ball so the water flows out equally in all 
directions.  Assume water is incompressible. 

• Now picture the flow through a spherical fishnet, 
centered on the source, and far smaller than the 
pool size. 

• Now think of a second spherical net, twice the 
radius of the first, so 4x the surface area. In 
steady flow, total water flow across the two 
spheres is the same: so                . 

•  This velocity field is identical to the electric field 
from a positive charge!  

21/v r



Flow Through any Surface 

• Suppose now instead of a 
spherical surface surrounding 
the source, we take some other 
shape fishnet. 

• Obviously, in the steady state, 
the rate of total fluid flow across 
this surface will be the same—
that is, equal to the rate fluid is 
coming from the source. 

• But how do we quantify the 
fluid flow through such a net? 

Remember our fluid is 
incompressible, so it can’t 
be piling up anywhere! 



Total Flow through any Surface 

• But how do we quantify the fluid 
flow through such a net? 

• We do it one fishnet hole at a time: 
unlike the sphere, the flow velocity 
is no longer always perpendicular to 
the area. 

• We represent each fishnet hole by a 
vector      , magnitude equal to its 
(small) area, direction perpendicular 
outwards.  Flow through hole is  

• The total outward flow is               .  
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The component of      perp. to 
the surface is v              .             
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Gauss’s Law 

• For incompressible fluid in steady outward flow 
from a source, the flow rate across any surface 
enclosing the source               is the same. 

• The electric field from a point charge is identical 
to this fluid velocity field—it points outward 
and goes down as 1/r2. 

• It follows that for the electric field 

     for any surface enclosing the charge  

                                             (the value for a sphere).  
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What about a Closed Surface that 
Doesn’t Include the Charge? 

• The yellow dotted line 
represents some fixed closed 
surface (visualize a balloon). 

• Think of the fluid picture: in 
steady flow, it goes in one 
side, out the other. The net 
flow across the surface must 
be zero—it can’t pile up 
inside. 

• By analogy,                       if 
the charge is outside.  
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What about More than One Charge? 

• Remember the Principle of Superposition: the 
electric field can always be written as a linear 
sum of contributions from individual point 
charges: 

 

    and so 

 

   

  will have a contribution               from each 
charge inside the surface—this is Gauss’s Law.  
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Gauss’ Law 

• The integral of the total electric field flux out 
of a closed surface is equal to the total charge 
Q inside the surface divided by     :  
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