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Today’s Topics 

• Field lines and equipotentials 

• Partial derivatives 

• Potential along a line from two charges 

• Electric breakdown of air 

 



Potential Energies Just Add 

• Suppose you want to bring one 
charge Q close to two other fixed 
charges: Q1 and Q2. 

• The electric field Q feels is the 
sum of the two fields from Q1, Q2, 
the work done in moving      is 

 

     so since the potential energy 
change along a path is work done, 
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Total Potential Energy: Just Add Pairs 

• If we begin with three charges Q1, 
Q2 and Q3 initially far apart from 
each other, and bring them closer 
together, the work done—the 
potential energy stored—is  

 

 

    and the same formula works for 
assembling any number of 
charges, just add the PE’s from all 
pairs—avoiding double counting!  
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Equipotentials 

• Gravitational equipotentials 
are just contour lines: lines 
connecting points (x,y) at 
the same height. 
(Remember PE = mgh.)  

• It takes no work against 
gravity to move along a 
contour line. 

• Question: What is the 
significance of contour lines 
crowding together?  

http://www.uiweb.uidaho.edu/biogeochemistry/images/mickey_hs_contour.gif


Electric Equipotentials:  Point Charge 

• The potential from a point charge Q is 

 

 

• Obviously, equipotentials are surfaces of 
constant r: that is, spheres centered at the 
charge.  

• In fact, this is also true for gravitation—the 
map contour lines represent where these 
spheres meet the Earth’s surface. 
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Plotting Equipotentials 

• Equipotentials are 
surfaces in three 
dimensional space—we 
can’t draw them very 
well.  We have to settle 
for a two dimensional 
slice. 

 

• Check out the 
representations here. 

http://www.falstad.com/vector2de/
http://www.pstcc.edu/departments/natural_behavioral_sciences/E2020D0103.gif


Plotting Equipotentials 

• . 

Here’s a more physical representation of the electric potential as a function 
of position described by the equipotentials on the right. 

http://www.pstcc.edu/departments/natural_behavioral_sciences/E2020D0103.gif


Given the Potential, What’s the Field? 

• Suppose we’re told that some static charge 
distribution gives rise to an electric field 
corresponding to a given potential                . 

• How do we find                 ? 

• We do it one component at a time:  for us to 
push a unit charge from                to                       
takes work            ,   and increases the PE of the 
charge by                                            .  

• So:  
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What’s a Partial Derivative? 

• The derivative of f(x) measures how much f 
changes in response to a small change in x.  

• It is just the ratio f/x, taken in the limit of 
small x, and written df/dx. 

• The potential function                   is a function of 
three variables—if we change x by a small 
amount, keeping y and z constant, that’s partial 
differentiation, and that measures the field 
component in the x direction: 
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Field Lines and Equipotentials 

• The work needed to move unit charge a tiny 
distance       at position     is                    . 

• That is,  

 

• Now, if        is pointing along an equipotential, 
by definition V doesn’t change at all!    

• Therefore, the electric field vector           at any 
point is always perpendicular to the 
equipotential surface.    
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Potential along Line of Centers of Two 
Equal Positive Charges  

• D  V(x) 

x 0 Q Q 

Note: the origin (at the midpoint) is a “saddle point” in  a 2D 
graph of the potential: a high pass between two hills.  It slopes 
downwards on going away from the origin in the y or z directions. 



Potential along Line of Centers of Two Equal Positive Charges  

• Clicker Question: 

• At the origin in the graph, the electric field Ex is: 

A. maximum (on the line between the charges) 

B. minimum (on the line between the charges) 

C. zero  
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Potential along Line of Centers of Two Equal Positive Charges  

• Clicker Answer: 

Ex(0) = Zero:  because                      equals minus the slope. 

 

• (And of course the two charges exert equal and 
opposite repulsive forces on a test charge at that point.)  

V(x) 

x 0 Q Q 

x

V
E

x


 





Potential and field from equal +ve charges 

• . • . 

http://t0.gstatic.com/images?q=tbn:ANd9GcTMfey_JDzvTLmROF0hzNfwJIJDTGKLcUYuMpbiP2izrx2Fu1hp
http://t3.gstatic.com/images?q=tbn:ANd9GcTf9V_-HvVcaW9G5v2mwKzBpO8U_sS_RK5yk2UXzg8oULZxIcNFvQ


Potential along Bisector Line of Two Equal Positive Charges  

• For charges Q at y = 0, x = a and x = -a, the potential at 
a point on the y-axis:  
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Now plotting potential along 
the y-axis, not the x-axis! 

Note: same formula will work on axis for a ring of charge, 2Q becomes total charge, a radius. 



Potential from a short line of charge 

• Rod of length 2 has uniform 
charge density , 2 = Q.  What is 

the potential at a point P in the 
bisector plane? 

• The potential at y from the charge 
between x, x +  x  is 

 

 

• So the total potential  
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Great – but what does V(y) look like? 



Potential from a short line of charge 

 

 

• What does this look like at a large 
distance           ?  

• Useful math approximations:  for 
small x, 

• So 

 

 

• And    
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Bottom line: at distances large compared with the size of the line, it looks like a point charge. 



Potential from a long line of charge 

• Let’s take a conducting cylinder, radius R.   

• If the charge per unit length of cylinder is , the 
external electric field points radially outwards, 
from symmetry, and has magnitude E(r) = 2k/r, 
from Gauss’s theorem. 

 

• So 

 

 

• Notice that for an infinitely long wire, the 
potential keeps on increasing with r for ever: we 
can’t set it to zero at infinity!  
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Potential along Line of Centers of Two 
Equal but Opposite Charges  

• D  V(x) 

x 0 -Q Q 



Potential along Line of Centers of Two Equal but Opposite Charges  

• D  

V(x) 

x 0 -Q Q 

Clicker Question: 
At the origin, the electric field magnitude is: 
A. maximum (on the line and between the charges) 
B. minimum (on the line and between the charges) 
C. zero  



Potential along Line of Centers of Two Equal but Opposite Charges  

• D  

V(x) 

x 0 -Q Q 

Clicker Answer: 
At the origin in the above graph, the electric field magnitude is: 
minimum (on the line between the charges) 
• Remember the field strength is the slope of the graph of V(x): and 

between the charges the slope is least steep at the midpoint. 

 



Charged Sphere Potential and Field 

• For a spherical conductor of radius R with 
total charge Q uniformly distributed over its 
surface, we know that 

 

 

• The field at the surface is related to the 
surface charge density  by E = /0. 

• Note this checks with Q = 4πR2. 
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Connected Spherical Conductors 

• Two spherical conductors are 
connected by a conducting rod, then 
charged—all will be at the same 
potential. 

• Where is the electric field strongest? 

A. At the surface of the small sphere 

B. At the surface of the large sphere 

C. It’s the same at the two surfaces. 

• a 



Connected Spherical Conductors 

• Two spherical conductors are connected 
by a conducting rod, then charged—all will 
be at the same potential. 

• Where is the electric field strongest? 

A. At the surface of the small sphere. 

• Take the big sphere to have radius R1 and 
charge Q1, the small R2 and Q2. 

• Equal potentials means Q1/R1 = Q2/R2. 

• Since R1 > R2, field kQ1/R1
2 < kQ2/R2

2. 

• This means the surface charge density is 
greater on the smaller sphere! 

• a 



Electric Breakdown of Air 

• Air contains free electrons, from 
molecules ionized by cosmic rays or 
natural radioactivity. 

• In a strong electric field, these 
electrons will accelerate, then 
collide with molecules.  If they pick 
up enough KE between collisions to 
ionize a molecule, there is a “chain 
reaction” with rapid current 
buildup. 

• This happens for E about 3x106V/m. 



Voltage Needed for Electric Breakdown 

• Suppose we have a sphere of radius 10cm, 0.1m. 

• If the field at its surface is just sufficient for 
breakdown, 

 

• The voltage 

 

 

• For a sphere of radius 1mm, 3,000V is enough—
there is discharge before much charge builds up. 

• This is why lightning conductors are pointed!  
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