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Preliminaries:  Units for Angular Velocity 
The tachometer on your car dashboard tells you your car engine’s angular speed in rpm, revolutions per 

minute, and probably redlines around 6 or 7,000 rpm. 

A common unit for electromagnetic oscillations (to be discussed nest semester) is cycles per second: 

there’s even an official name, the Hertz, abbreviated Hz: 

1 Hz = one cycle per second 

But angular motion isn’t restricted to complete cycles—we need to measure fractions of a cycle as well, 

for example, in reorienting an aircraft carrier, the Hertz is not going to be a handy unit.  

A complete circle is divided into 360 degrees, written 360°.  (This was done by the Babylonians, 4,000 

years ago, probably because the Sun moves very close to 1° a day through the sky, relative to the fixed 

stars.)  So we could talk about angular velocity in degrees per second.  

However, from a practical point of view, we often need to relate angular velocity to the speed of some 

part of the wheel.  For example, if I whirl a stone around in a sling at some number of revolutions per 

second, or degrees per second, then let go, how fast is the stone moving? 

 

 

Let’s say the angular velocity is n degrees per second, or n/360 Hz.  If the sling is r meters long, so the 

stone is going in a circle of radius r (ignoring the slight movement of my hand), the stone travels 2πr 

meters per cycle, so its speed v is given in terms of its angular speed n by: 

 
2

.
360

v nr


  

R 

n revs per sec 

v? 
What linear speed corresponds to n 

revolutions per second? 
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This rather clumsy formula is a consequence of following the Babylonians in defining the unit of angle as 

1/360 of a full circle.  We’d have a much nicer formula if instead we defined our unit of angle as 1/2π of 

a full circle!  

So we define:  the radian = 1/2π of a full circle.  This works out to be about 57.3°, and since the 

complete circumference of a circle is 2πr, the distance around the circle corresponding to an angle of 

one radian is one radius. Duh. 

 

It’s easy to see that radians are the natural angle unit for trig:  look at the sine of a small angle. 

Our default notation for an angle is θ, measured from the x-axis, with counterclockwise as positive.   

Angular velocity in radians per second will usually be denoted by  ω:  / .d dt   

So if a wheel is rotating at positive angular velocity ω radians per second about a fixed axle, a point on 

the wheel at distance r from the axle is moving at speed 

 v r  

 a formula we’ll be using a lot. 

The standard notation for angular acceleration  is 2 2/ / .d dt d dt     

Notice that if we have constant angular acceleration, formulas for angular velocity and angular 

displacement (meaning angle turned through) are just like those for linear motion under constant force: 

Angle of one radian 

the red solid arc has length 

equal to the radius of the circle. 

sinθ ≈ θ  for θ small   

for  r = 1, the arc length is θ, 

the short black line = sinθ. 



3 

 

 

0

21
0 0 2

2 2

0 02 ( ).

t

t t

  

   

    

 

  

  

 

Just be sure your system has constant angular acceleration before using these formulas! 

 

Torque:  Seesaw Physics 
Torque is a measure of the effectiveness of a force in getting something rotating: actually we’ve come 

across this already in the discussion of the seesaw. If a child sits at the end of a level empty seesaw, it 

begins to rotate.  O.K., it doesn’t get far, but there is angular acceleration.  And we know the if the child 

sits close to the pivot point, the seesaw turns more slowly.   

We’ve also seen that two children, one twice as heavy sitting at half the distance, balance—we said they 

had the same leverage.  This “leverage” is actually what’s called torque.  It’s also called the “moment” of 

a force about an axis of rotation. It’s the product of the weight of the child and the distance from the 

pivot or axle.   

So, for a 20 kg child at a distance of  1.5m, the torque about the pivot point is 300 N.m, setting g = 10. 

 

 

We can also have two forces on the same side of the pivot balancing—if one of them is upwards.  If a 

20kg child is sitting half way to the pivot, with no-one on the other side, you could lift the seesaw to a 

horizontal position by supplying an upward force equivalent to 10 kg weight at the end of the seesaw, 

the same side as the child.   

d 2d 

2mg 
mg 

Balancing a seesaw 
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One further point: what if you supplied the upward force by tying a (light) rope to the end of the 

seesaw, and tugging at some angle?  In that case, the tension in the rope, where it pulls on the seesaw, 

is equivalent to a force perpendicular to the seesaw plus a force parallel. The latter component does 

nothing (unless the seesaw can move sideways), the upward component is all that counts. 

 

There’s another way to look at this which is sometimes useful:  instead of resolving the force into 

components at its point of application, as in the diagram above, we can take the whole force, acting 

along the line in space through its point of application, but calculate its leverage—the torque—by taking 

the lever arm to be the distance from the pivot point to the line of the force: 

d 

2d 

2mg 

T = 2mg 

Only the upward rope force component counts 

angle 30° 

2mg mg 

√3mg 

d 

2d 

2mg 

T = mg 

Balancing a seesaw the hard way 
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Either way, the formula for torque strength  is: 

 sinFr   

where F is the magnitude of the force, r the distance from the pivot of the point of application, and θ 

the angle between the vector r


from the pivot point to where the force acts and the force F


. 

Rotational Equivalent of Newton’s First Law 
By the time Galileo noticed that a smooth ball on a flat surface with little friction would keep the same 

velocity a long time, it was already known that a rotating grindstone, with a well-oiled axle, would keep 

spinning a long time too—and this, taken to the ideal limit, is Newton’s First Law for rotation:  in the 

absence of torque, a body will spin at constant angular velocity indefinitely.  

It’s worth mentioning that a vertical grindstone must have the axle through the center of gravity.  If this 

is not the case, gravity will exert a torque, and although the wheel might keep spinning, it won’t be at 

constant angular velocity. 

In fact, the torque on such an off-center wheel is given by 
CM CMsinMgr Mgx   , where rCM  is the 

distance of the center of mass from the axle, and θ the angle between 
CMr


and the vertical. 

To prove this, imagine the wheel to be made up of a large number of glued-together small masses mi at 

positions 
ir


.  

2d 
T = 2mg 

Torque = force × distance of line of force from pivot = 4mgdsin30 = 2mgd 

angle 30° 

2dsin30 
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As discussed in the preceding section, the torque about the axle of the weight of the small mass mi is 

equal to mig multiplied by the perpendicular distance from the axle to the line of action of the force, 

that is, migxi , taking the axle as the origin of coordinates.   

Evidently the magnitude of the total gravitational torque from the imbalance 

 CMi i

i

m gx Mgx    

from the definition of the center of mass.   

Kinds of Equilibrium 
If there is no friction at the axle, the wheel can only be at rest if the center of mass lies on the vertical 

line through the axle.  If the center of mass is directly above the axle, the wheel might be at rest, but the 

slightest push will start it turning: this is called “unstable equilibrium”.  If the center of mass is below the 

axle, a slight push to one side will cause the wheel to swing back then oscillate, a topic we’ll return to 

later—this is “stable equilibrium”.  If the center of mass is exactly at the axle, the wheel will rotate at a 

steady rate—this is “neutral equilibrium”.   These all have analogies in linear motion: assuming no 

friction, unstable equilibrium is a ball perched on a mountaintop, stable is a ball sitting at the bottom of 

a valley, and neutral is a ball on a flat plane.   In two dimensions, there are more complicated 

possibilities: a ball in the middle of a saddle might be stable for displacements parallel to the horse, but 

unstable for displacement the other way.  Situations analogous to this horsy example do in fact occur in 

physical systems. 

Rotational Equivalent of Newton’s Second Law 

A Simple Example:  Introducing the Moment of Inertia 

Newton’s Second Law, in the form F ma
 

, states that an object undergoes linear acceleration in 

response to an net external force, and the mass determines the magnitude of this response.  It’s pretty 

mig 

mi 

xi 

axle 
Torque around axle 

from small part of 

an off-center wheel 

τi = migxi. 
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clear by now that the angular version must be that an object undergoes angular acceleration in response 

to an net external torque—but it’s less clear what plays the role of mass this time.  

To find out, we’ll look at an example of angular acceleration which is almost the same as linear 

acceleration.  

 

 Suppose a mass M is firmly attached to a horizontal disk of negligible mass on a frictionless vertical axle, 

so that the mass M must go around in a horizontal circle.  Assume the mass is initially at rest, then the 

force F is applied.  What happens in the first few moments?   

Well, of course, the mass accelerates with acceleration a = F/M.  As soon as it reaches a significant 

speed, the disk will begin to exert a force towards the center, to keep it on its circular path, but let’s just 

concentrate on those first few moments before that effect becomes important.  

Let’s  translate that initial acceleration into angular language.  Since the angular velocity  is related to 

the actual velocity by v = R , the angular acceleration  must be related to the ordinary acceleration a 

along a tangential direction by a = R . So we can see how to connect the two accelerations. 

Now we must connect the two forces, or, rather, the linear force F with the torque   acting on the 

system mass + wheel.  

The torque  is just equal to the force F multiplied by its leverage arm R, that is,  = FR.  Putting this 

together with a = R , we find that F = Ma translates to: 

 = FR = MaR = MR2   

Comparing this equation,  = MR2  , with F = Ma, we notice that the quantity MR2 plays the role of 

mass, or inertia, in rotational dynamics for this simple case.  It is called the moment of inertia, and 

labeled I.  We show in the next section that for more complicated rigid bodies,   = I is still correct, and 

I is a sum over the body of terms like MR2.  

M 

R 

ω = dθ/dt 
F 

The mass M has speed  v = Rω 

and acceleration  a = Rdω/dt = Rα 
axle 
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Moments of Inertia for Extended Bodies 

We’ve only found the “moment of inertia” for a single mass attached to a light disk.  What about 

something more complicated, for example a heavy disk?  

The key to finding the moment of inertia for a solid body is to visualize it as a lot of small masses all 

glued together. Think specifically of a heavy wheel of radius R, rotating about a fixed axle with negligible 

friction.  Imagine the wheel to be initially at rest, then a force F is applied to the rim tangentially, so that 

the torque is FR.  Of course, the whole wheel begins to rotate, so think what happens to one of the small 

masses mi  we are imagining the wheel to be made up of.   If it is at a distance ri  from the axle, and the 

initial angular acceleration of the wheel is  , this small mass, mi  say, must experience an initial 

acceleration ri , so there must be a total force on it of fi = miri , and therefore a torque acting on it of 

firi  = miri
2 .  

 

But where, exactly does this torque come from?   Ultimately, it must come from the force F being 

applied to a different part of the wheel, but the immediate cause for the small mass mi’s acceleration is 

just the pulls and pushes of its neighbors.   

In other words, if you push on one part of the wheel, since it’s a solid body its rigidity transmits the 

effect of the force to all the other parts, so the wheel rotates as a whole—provided of course the force 

is not strong enough to tear the wheel apart.  

Since the torque felt by one small part of the wheel  τi = miri
2 , the total torque felt by all the parts of 

the wheel is:  

τ = Στi  =  miri
2  =  dmr2   

with the integral being over all the tiny masses dm making up the wheel.  

Rigid wheel made up of 

many little masses mi :  

when external torque 

FR is applied, mi  has 

initial linear 

acceleration riα, so 

experiences torque:  

τi = firi =  miri
2 

F 
ri 

axle 

mi 
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Now comes a crucial point.  How do we relate this torque to the external force torque FR?  What about 

all the internal forces—the fact that each part of the wheel feels forces from neighboring parts?  How do 

we take account of this very complicated situation? 

The answer is:  we don’t have to!  By Newton’s Third Law, all those internal forces are in equal opposite 

pairs, actions and reactions between neighboring masses.  This means that when we sum over all parts 

of the wheel, we count all these forces, and they all cancel each other in pairs.  

Therefore the total torque is just that from the external forces. 

It follows that the analog of Newton’s Second Law for rotation about an axle is  

Torque  = I  

where the moment of inertia I is given by   miri
2 =   dmr2 .  (And remember that as always the 

acceleration must be measures in radians/sec2.) 

Moments of Inertia:   Hoops, Disks, Cylinders, Rods. 

Finding the moment of inertia l is now just a matter of doing elementary integrals.  For the case of a 

hoop of mass M, where all the mass can be taken at the same distance R from the axis of rotation, no 

integral at all is necessary:    

For a hoop, I = MR2. 

 A disk can be thought of as constructed of successive hoops, like a two-dimensional onion.  As a 

practical matter, the best approach is to use the two-dimensional density, call it , (units:  kg/m2) so 

that the total mass of the disk is density x total area,  M =  R2.  Then the “hoop” which is that part of 

the disk between r and r + Δr  from the center has mass m = 2rΔr , and that hoop has moment of 

inertia  mr2 = (2rΔrr2. 

 

A disk can be seen as 

made of concentric 

hoops glued together. axle 

r 

r + Δr 
R 
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Then just do an integral to add up the moments of inertia of all the nested hoops from 0 to R to find the 

moment of inertia of the disk: 

3 4 21 1
disk 2 2

0

2 .

R

I r dr R MR     

 

The same expression works for a cylinder, which for these purposes is just a stack of disks.  

What about a rod about one end?  Assume its (constant) linear density is λ kg/m., so a length dx has 

mass λdx.  Then the moment of inertia is 

 2 3 2

0

/ 3 / 3.

L

I x dx L ML     

Suppose such a rod is hinged at one end, horizontal, and falls.  What is the initial acceleration of its end? 

 
2/ 2 ( / 3)

3 / 2.

MgL I ML

gL

  



  


 

So the end accelerates at Lα = 3g/2.   

If it is at first sight surprising that the end of the rod accelerates downwards faster then g, consider the 

following system: a very light rod, hinged at one end, with a large weight attached to its middle. 

 

 

A very light rod hinged to a wall at one end has a mass at 

its center: how fast will the rod’s free end accelerate 

downwards on release from a horizontal position? 
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 If let go from a horizontal position, the weight will completely dominate the situation, and accelerated 

downwards very close to g.  This means the far end of the light rod is forced downwards at close to 2g.  

Our example above is not that extreme, but the same idea. 

The Parallel Axis Theorem 

If we know the moment of inertia of an object about a line through the center of mass, the moment of 

inertia about any parallel line is easily found.   

We’ll prove this for a two-dimensional object (really a thin three-dimensional object): 

 

With the notation in the diagram, 2

CM i i

i

I m r , and recall 0.i i

i
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This is the Parallel Axis Theorem:  

2

newaxis CM .I I Mh   

where h is the perpendicular distance between the new axis and the parallel axis through the center of 

gravity.   It’s easy to extend this proof to a three-dimensional object:  taking the parallel axes to be in the 

z-direction, replace 
ir


 with (xi, yi).  

ir


 

h


 
new axis 

center of mass 

mi ir


 

The moment of inertia of the two-dimensional object about any axis 

perpendicular to the object is simply related to that about the 

parallel axis through the center of mass. 
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Varying Moment of Inertia  
Newton did not actually write his Second Law as F = ma = mdv/dt, but as F = dp/dt, where p = mv  is 

called the momentum, and in fact this is the correct description of nature in cases where the mass of an 

object varies, such as a rocket expelling fuel, or a falling raindrop growing from condensation. 

Similarly, the  rotational Second Law  = Icould be written more generally as 

  d
I

dt
   

to allow for the possibility of a varying moment of inertia, and this is much more common than a varying 

mass.  Think of a spinning dancer or skater throwing her arms out and bringing them in, or of a diver 

curling up and uncurling his rotating body.  The external torques are pretty small under these conditions, 

the variation in spin speed is largely due to the changing moment of inertia and the constancy of the 

total angular momentum IThe observed variations in angular velocity confirm the validity of the more 

general law.  

Rotational Kinetic Energy 
A rotating object has kinetic energy even if its center of mass is at rest.  Think of it as composed of many 

small masses mi at distances ri from the center of mass.  

Then if the angular velocity is mi has speed vi = ri, and kinetic energy ½ miri
22, and summing these,  

KE of rotation = ½ I2. 

If a net torque is acting, this energy will change: 

  21
2

d d
I I I

dt dt


       

so the rate of working, the power, of a torque equals the magnitude of the torque multiplied by the 

angular velocity, just as a force F moving something at speed v is working at a rate Fv.   

This equation can also be integrated: 

 21
2

d
d I dt dt d

dt


           

The total change in kinetic energy equals the integral of torque times angular distance, valid even if the 

torque is varying. 

Rolling Down a Ramp 
For example, we’ll take the case of a hoop of radius R rolling down a ramp without slipping.  Suppose at 

some instant the center of the hoop is moving with speed v.  Of course, other points on the hoop are 
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moving at different speeds.  The point at the bottom in contact with the ramp isn’t moving at all at that 

instant.  But in the frame of reference in which the center of mass is momentarily stationary, that point 

is moving backwards at R.  This means that the angular speed and the linear speed of the center of 

mass are related by v = R.    

 

 

What is the total energy of the rolling hoop?  Imagine as usual that it is made up of a large number of 

small masses mi.  If the small mass mi has velocity vi, the total energy is   ½  mvi
2.  Since its both moving 

along and rolling, let’s write the velocity of the small mass mi as 

CMi iv v u
  
   

where 
iu


 is the velocity of the small mass mi relative to the center of mass. 

Then the total kinetic energy of all the small masses 

 22 2 21 1 1 1
CM2 2 2 2

.i i i i CM CM i i i i

i i i i

mv m v u Mv v mu mu
    
          

The first term is just the ordinary kinetic energy of linear motion, the last term is the same as the kinetic 

energy of rotation for the center of mass at rest.  The middle term is zero, because the sum is just the 

linear momentum in the center of mass frame, which is zero.  ( 0i i i i

i i

d
mu m r

dt
   

 in the  frame 

in which the center of mass is at rest.) 

0 

v = Rω  

Velocities of parts of hoop relative to 

its center:   v = Rω perpendicular to 

the  radius. 

Velocities relative to the ramp for no-

slip: zero at point of contact, v at 

center of hoop, 2v at farthest point. 

v 

2v 

ω
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Therefore, the total energy is just the sum of the translational kinetic energy and the rotational kinetic 

energy: 

2 21 1
2 2CME Mv I   

where I is the moment of inertia about the center of mass.  

So what does this mean for the hoop?  If it’s rolling  at speed v, it’s rotating at angular speed v/R , 

and since its moment of inertia is MR2,  its total energy is  

2 2 2 2 2 21 1 1 1
2 2 2 2

( / ) .E Mv I Mv MR v R Mv      

So it has twice the kinetic energy of a block of the same mass sliding down at the same speed.  Put 

another way, a block sliding down through a height h will have speed given by v2 = 2gh, the hoop will 

only reach speed v2 = gh, because it will have lost the same amount of potential energy, so must have 

the same total kinetic energy—including the rotational kinetic energy, which the block didn’t have.  

The equation F = ma still describes its linear motion down the ramp, and after descending a distance x 

its velocity is given by v2 = 2ax.  Evidently, the rolling hoop has only half the acceleration of the sliding 

block, so must only be subject to half the force pulling it downhill.  The difference is the retarding static 

frictional force at the point of contact:  that must be just half of the gravitational force component 

pointing down the hill.  If there isn’t enough friction, the hoop will slide without increasing its angular 

velocity.   (Note: the hoop has only half the acceleration of the block, but reaches a final velocity greater 

than half that of the block, because it accelerates for a longer time.) 


