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Introduction: What are these 2415 E&M Notes? 
4/18/2025 

I taught this course using PowerPoint, with demonstrations and clicker questions, etc. However, some 
students asked for traditional lecture notes to help review, etc. I’ve put together here the notes for the 
first 24 lectures, covering all e&m topics discussed except waves.  

The first 9 lectures, almost a quarter of the course, are on electrostatics.  Like the mechanical statics we 
covered last semester, this is about systems at rest, but now charges in equilibrium, with the total 
electrical force on each charge being zero.  Actually, the book includes in this section motion of single 
electrons, or charged objects—what it doesn’t include is the motion of huge numbers of electrons down 
a wire, an electric current—this is covered in the next four lectures. 

The next 11 lectures cover magnetism, production of magnetic fields by electric currents, and the forces 
on electric currents from magnetic fields, the basis of electric motors and dynamos, going on to 
oscillating circuits, the basis of radio transmission.   
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1  Introducing Electrostatics: Electric Forces in Atoms, Molecules and 
Solids 

The Atom and its Nucleus 
Just to get going here:  you all know, of course, that there are two kinds of electric charge, positive and 
negative, and that like charges repel, unlike charges attract.  We’ll discuss a little later how this is 
confirmed experimentally, and all the details.  Now, this electric force is what holds atoms together by 
binding the electrons to the nucleus, and what holds atoms together to form molecules—so it’s at the 
basis of all matter—if you take the atomic nucleus as given, which is fine for chemistry, biology, etc.  The 
nucleus itself, though, is made of neutrons and protons, the protons are positively charged, so repel 
each other.  The nucleus must therefore be held together by  stronger force, which is termed, 
appropriately, the nuclear force.  But if the nucleus is big enough, the repulsion between protons wins 
out, and it flies apart. This imposes a limit on the charge of a nucleus.  The reason the electrostatic 
repulsion eventually dominates is that the nuclear binding force is strong but very short range, almost 
like a layer of glue on the particles, so only holds together protons and neutrons very close to each 
other, whereas the electrostatic repulsion is still there, even if lessened, at greater distances.  So not 
only does it limit the size of nuclei, it’s also the reason nuclear fission takes place.  

In an atom, the nucleus contains Z protons each having charge e, Z  is called the atomic number, and 
total positive charge Ze.  The atom also has Z electrons, total charge –Ze. The electrons are much lighter 
than the protons and neutrons (about 1/2000) and they form a cloud surrounding the nucleus, of size 
around 0.1 nanometers, 10-10 meters. The nucleus is of order femtometers in size, 10-15 meters.  

Just how the electrons are held in place cannot be explained without quantum mechanics. Even the size 
of the atom is inexplicable without the quantum.  But in this course, we’ll take it as given.  Atoms can 
lose electrons if they are hit by other atoms or by strong electromagnetic fields.  An atom missing one or 
more electrons is called an ion.  It is positively charged, since the remaining electrons no longer balance 
the nuclear charge, so a sodium atom minus its electron is written Na+.   The electronic configurations 
are such that a sodium atom has one loosely attached electron, easy to lose.  On the  other hand, a 
chlorine atom has a gap in the electron pattern and easily accommodates an extra one.   When lots of 
Na and Cl atoms are put together, it turns out that the Cl attracts the Na’s loose electron so powerfully 
that it leaves home, settling into the Cl.  The Na becomes  Na+, the Cl becoming Cl-, then all these ions 
form a cubical pattern, with alternate atoms like a 3D chessboard, so each + has six – neighbors, etc., 
and electrostatic attraction keeps the whole thing together.  (But it’s not the whole story—there’s 
repulsion between ions that get close.  As we’ll see later, electrostatic forces alone couldn’t hold the 
ions stably in position.  Quantum mechanics is essential.) 

Yet if you put the salt into water, it dissolves!  What happened to the electrostatic attraction?  As we’ll 
discuss later, water partially shields electric fields, it makes them weaker, and so ions near the surface of 
a crystal can be knocked off by thermal vibrations, and not return. 
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Conductors and Insulators 
But not all solid formation can be explained in electrostatic terms: what if we just have a collection of 
sodium atoms?  They will form a crystal too.  It turns out that this time, the loose electrons leave their 
home atoms and wander throughout the crystal, so it can be visualized as a lattice of positively charged 
Na ions in  a sea of negatively charged electrons.  Why should this stay together?  Unlike NaCl, where 
electrostatics does the job once you grant what happens to the atoms, here quantum mechanics is 
needed to make any progress in understanding—the uncertainly principle, and the electron spin, both 
quantum concepts, need to be put together with the electrostatic force to explain what’s going on.  We 
can’t go into it at this point, but one result is important:  this solid sodium has electrons free to travel 
anywhere in the crystal.  A solid with such mobile electrons is called a conductor (of electricity) because 
the electric charge in it can move around.  Good conductors are metals.  They are shiny, because, as 
we’ll see later, the mobile electrons reflect light well. They also conduct heat efficiently, again because 
it’s the mobile electrons that carry the heat energy around. 

In contrast, in solid salt the electrons are firmly pinned down to their atoms.  Charge cannot move 
around, and—again for quantum mechanical reasons—any extra charge added finds it difficult to move 
around too.  Solids (or fluids) with this property are called insulators. 

The transfer of electrons from Na atoms to Cl atoms, when they get close, has an analogy on a far larger 
scale:  if you rub a glass rod with a piece of fur, both rod and fur become charged.  (The technical name 
is the triboelectric effect—tribo just means friction.)  Actually the work done in rubbing is irrelevant—
the reason for rubbing is just to get the two surfaces in really close contact, so surface atoms on the two 
can transfer electrons.  The glass gets positively charged.  You can look up triboelectric series in 
Wikipedia to find out which way the charge moves—it’s not obvious, rubbing glass with rabbit fur 
transfers electrons to the glass, cat fur has the opposite effect—at least according to some tables.  

Charge Conservation is Always True 
In an ordinary electrically neutral object, the total negative charge of the electrons exactly balances the 
total positive charge of the nuclei. Various experiments involving rubbing, or adding electric fields, etc., 
just move the electrons around, they do not change the number of electrons  (they might become 
unbound, of course.) The total electric charge isn’t changed.  If we go for a moment beyond the energy 
range relevant for this course, in high energy (relativistic) collisions, electrons can disappear, but 
experimentally in such collisions either new negatively charged particles will  be created, or positively 
charged particles will disappear:  the total electric charge is always conserved.  

Observing Electrostatic Forces 
This is easy: if you run a rubber comb through your hair, it will become negatively charged, and will pick 
up small pieces of paper, which it wouldn’t before.  But wait a minute—the bits of paper weren’t 
electrically charged!  What happens is that when the charged comb is brought near, the electric field 
distorts the charge distribution within molecules in the paper.  The electrons within molecules will move 
a bit away from the comb, leaving the positive charges slightly closer—even though no charge escapes 
from its own molecule.  The net effect is that the positive charges, attracted by the comb, are slightly 
closer than the negative charges, which are repelled, so there is a net attraction. 

https://upload.wikimedia.org/wikipedia/commons/0/00/Triboelectric-series_EN.svg
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Little Charged Spheres 
When we charge up the comb, or a glass rod, the charge is distributed in some complicated way on the 
surface of the rod.  It can’t spread itself evenly, since the rod is an insulator, so it’s difficult to pin down 
exactly where the charge is.  To make life simpler, we use small metal spheres, hung with insulating 
string (see the picture below).  We rub the rod against the sphere, so some charge moves onto the 
sphere.  Since the sphere is a conductor, the charge on it will spread evenly.   If we charge two such 
spheres and hang them close to each other, but not touching, we see that they repel each other.  Like 
charges repel—and the glass is positively charged.  But if instead we use a Lucite rod, it’s negatively 
charged on rubbing, and we can confirm that a positively charged sphere will attract a negatively 
charged one.  

The Electroscope 
An electroscope detects the presence of charge by using repulsion of like charges.  The simplest is the 
gold leaf electroscope: two very light leaves, of gold foil, hang down close to each other from a 
conductor.  If charge is places on the conductor, it spreads onto the leaves, and they repel each other.  

A slightly fancier version has a central column and a pivoting light rod, all made of metal, so if charge 
flows into the column and rod, the the repulsion causes the rod to swing away—this is the object on the 
right, the big circle, in the picture below. 

 

Charging by Induction 
If a negatively charged (by rubbing with silk) Lucite rod is brought close to, but not in contact with, a 
conductor, charge will redistribute on the conductor: the electrons will move away from the vicinity of 
the Lucite, that part of the conductor will therefore have net positive charge.  But if we have two 

conductors in contact, so charge can 
flow from one to the other, and the 
Lucite rod is brought close to one of 
them, that conductor will have a net 
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positive charge.  If, now, the two conductors are separated (by moving one, using some insulated 
contact) while the Lucite rod is close, the charge imbalance will of course remain even when the Lucite is 
removed, since the imbalanced charge will not be able to flow back.  The Lucite rod never did touch the 
conductors: the electric charge on the rod itself did not move on to the conductors, but nevertheless the 
two conductors are now electrically charged, one positive the other equally negative.  This process is 
called charging by induction.   

The electroscope can be charged in this way:  one puts one’s finger on the sphere at the top, and brings, 
let’s say, a positively charged glass rod close to the ball. This will attract electrons from the earth, 
through one’s body and finger, on to the electroscope.  If one now takes one’s finger away, with the 
glass rod still in place, then removes the glass rod, the electroscope is now negatively charged, the 
needle will settle at some angle to the vertical.  If now, the glass rod reapproaches, this angle 
decreases—because electrons are being drawn from the needle up to the ball.  

 

2   Coulomb’s Law, Field Lines 

Coulomb’s Law 
Using the two small hanging spheres, we can even find just how the attraction varies with distance, by 
measuring the angle the string makes with the vertical and doing a simple calculation for varying 
distances.  This is tricky, though—the charge slowly leaks away, especially in summer, moisture in the air 
dampens the surfaces slightly, and they conduct.  

In an experiment essentially equivalent to this, Coulomb in the 1780’s established that the electrostatic 
force decreased with distance as the inverse square, exactly like gravity (but of course it’s much 
stronger!).  He also found the force to be proportional to the magnitude of the charge.  He accomplished 
that by using a charged sphere, then removing it and putting it in contact with an identical but 
uncharged sphere, so the charge would be equally shared.  Now putting the sphere back, he found the 
force had been halved.   

The Unit of Charge 
In his honor, the unit of charge is called the coulomb.  The charge on the electron is 1.6x10-19 coulombs.  
The coulomb is a practical unit for dealing with batteries and electric currents, it’s the amount of charge 
flowing down a wire per second when the current is one ampere (we’ll discuss these units in detail 
later).  Unfortunately, though, in electrostatics we never deal with charge on this scale, and the 
microcoulomb is more typical. 

For Electrostatics, this is an Immense Unit of Charge…  
To picture the strength of electrostatic repulsion, imagine taking an ounce of water, and imagine you 
could pull all the electrons off the atoms, and put them is a separate glass.  (Of course, this can’t be 
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done—as you’ll see!)  Now put our glass of electrons and your glass of nuclei one thousand kilometers 
apart, say here and Orlando.  What’s the strength of the attractive force between them? 

Now Avogadro’s number of molecules, 6X1023, weigh a gram mole, that’s 18 grams for water, so an 
ounce, 28 grams, is about 1024 atoms, or 1025 electrons (a water molecule has ten electrons total). One 
electron has charge 1.6x10-19 coulombs, so we have Q =1.6x106 coulombs.  Here to Orlando r = 106 
meters, so 

F =  kQQ/r2=9x109x(1.6x106)2/1012 , about 2x 1010N … 2,000,000 tons. 

From this, we can definitely conclude that for charged spheres repelling each other, the imbalance in 
electron numbers from neutral is very, very small: this is why typical electrostatic charges are 
microcoulombs, but total electron charge in a sphere is of order megacoulombs—the imbalance is of 
order 10-12 or so.  

Coulomb’s Law in Vector Form 
We follow standard practice in denoting a vector of unit length parallel to the vector r by r̂ : 

  

 

The Principle of Superposition 
 Electric force vectors add: if charge Q2 is repelled by charge Q1 and charge Q3, the total repulsive force 
on it is the vector sum of the separate repulsive forces: 

Q1 

Q2 

12r  

1 2 12
2

12

ˆkQ Q rF
r

=

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This may look obvious, but must be experimentally verified—the Law of Superposition is in fact not true 
for nuclear forces!  

The Electric Field 
Just why a charge can affect the motion of another charge some distance away is rather mysterious, as 
indeed is the gravitational attraction between two masses.  Einstein was the first to realize that a mass 
distorts space time in such a way that other masses, instead of moving at constant velocity, accelerate.  
The earth’s gravitational field slightly distorts space and time here so all masses free to fall accelerate 
downwards at the same rate (ignoring other forces, such as air resistance, of course).   

An electric charge does not distort spacetime, but does have a surrounding energy density in space, 
called its electric field. Another charge placed in this field experiences the inverse-square force.   

The electric field ( )E r




at a point r  is defined by stipulating that the force F


on a tiny test charge q  at 

r  is equal to qE


.    

Therefore, the electric field at a point can be determined experimentally without knowing the details of 
the placement of charges producing the field.  It may not be necessary to know that.  The reason for 
taking a small test charge is that if the field is partially from charges on conductors, introducing a large 
test charge will change the distribution of the charges on conductors, so changing the field being 
measured.  However, if the field is from point charges, or charges on insulators, any size test charge will 
be fine. 

Field from Two Equal Charges  
 Two charges Q are placed on the y-axis, equal distances d from the origin up and down.  What is the 
electric field on the x-axis, and where does it reach a maximum value? 

Q1 

Q2 

12r  

1 2 12
12 2

12

ˆkQ Q rF
r

=


 

Q3 

3 2 32
32 2

32

ˆkQ Q rF
r

=


 

total 2on F Q

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It’s clear from the diagram that at any point on the x-axis, the sum of the electric fields from the two 
charges is itself along the axis, and has value 

 
( )3/22 3 2 2

2 2 2cos .kQ kQx kQxE
r r x d

θ= = =
+

 

Notice that at large distances (x >> d) this goes to 22 /kQ x , the same as a charge 2Q at the origin; but 

actually at the origin the electric field is zero: the two components are equal and opposite.  For small x, 
the field strength increases linearly with x.   Clearly, if the field with increasing x first increases then 
finally decreases, it must have a maximum value somewhere.  To find where this is, we use dE/dx = 0 at 

that point.  Routine differentiation of the above expression gives the value 
max

/ 2.Ex d=  

Lines of Force 
One way to visualize the electric field is to draw lines of force.  These are lines drawn so that at any point 
on the line, the electric force on a positive test charge is in the direction of the line. 

Exercise:  Try sketching the lines of force for the two equal charges in the diagram above.  

We already know the x-axis is a line of force, since the field everywhere on it is along the axis, but in 
different directions for positive and negative x.  We also know that anywhere on the y-axis, the force is 
along the y-axis, pointing away from the nearer charge.  We know that close to one of the charges, its 
force will dominate, so the field lines initially come out close to radially from the charge.   Finally, far 
away the two charges look like one, so again the field lines will be radial at large distances. 

Here’s a sketch: 

Q 

y-axis 

upper charge 2

ˆkQrE
r

=


 

Q 

totalE


 
d 

r  

θ  

θ  

x x-axis 
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To get a better idea of electric fields in this and other cases, go to this website.  Sometimes attempts are 
made to indicate the strength of the field by how close together the lines are drawn.  This is easy to see 
for the simplest case of a single charge, although even there one would think from a diagram on paper 
that the field was decreasing as 1/r, because that’s how the lines thin out—but really the field is in three 
dimensions, so actually they would thin out faster, as 1/r2, in a (more realistic) 3D model.   The other 
problem with this approach is that where the field is weak, no lines appear at all, so it’s difficult to figure 
out what’s going on.   We’ve added some dotted local lines of force near the midpoint, the place where 
the field strength goes to zero. 

Field on the Axis of a Ring of Charge 
Given what we’ve just done, this is very easy:  if a ring has total charge Q, uniformly spread around the 
ring, it can be replaced by a large number of small pairs of charges arranged as in the above example, 
and the axis of the ring is the x-axis in the above picture for all these pairs of charges, the electric fields 
of all the pairs add, they’re all along the axis for a point on the axis, so the answer has to be, for a ring of 
radius d,  

( )3/22 2
.kQxE

x d
=

+
 

Lines of force for two equal positive charges: 
the field is zero at the central point 

http://qbx6.ltu.edu/s_schneider/physlets/main/efield.shtml
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3  Dipole, Charged Line 

The Dipole 
Suppose now that in the previous example we replace the lower charge by –Q: 

 

Notice that now the electric field is perpendicular to the x=axis.  It has magnitude 

( )3/22 3 2 2

2 2 2sin .kQ kQd kQdE
r r x d

θ= = =
+

 

On the x-axis, this force is maximum at the origin, the point midway between the two charges, and at 
large distances it decreases as r-3, because the inverse square repulsion and attraction are opposing each 
other.  

A pair of equal and opposite charges close together like this is called a dipole.   

The electric field lines radiate outwards from the positive charge, inwards to the negative charge, and 
must cross the x-axis at right angles, giving the following picture: 

-Q 

y-axis 

upper charge 2

ˆkQrE
r

=


 

Q 

totalE


 

d 
r  

θ  

θ  

x x-axis 
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F QE= −
 

 



 

 

F QE=
 

 
θ  

 

Force on a Dipole in an External Electric Field 
Suppose an electric dipole (imagine now that the two charges are connected by a light insulating rod) is 

placed in an electric field of uniform strength, so its 

positive and negative charges feel forces QE


which are 

equal in strength, but of course opposite in direction.  
There is then no net force on the dipole, but there is in 
general a torque, 

p Eτ = ×


 

, 

where the vector dipole moment p has magnitude Q , 
and direction along the line of the dipole from the 
negative charge to the positive charge. 

 

Electric field lines of force for a dipole:   
charges Q, -Q a fixed distance  apart 
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R 

E


from charge 
in  RdѲ 

Arc of circle charged from –Ѳ0 to +Ѳ0  

Ѳ0 
Ѳ 

RdѲ 

E


from charge 
in  d(RtanѲ) 

Field from infinite line of charge 

Ѳ 
RtanѲ 

R 

RsecѲ 

Electric Field from a Continuous Charge Distribution 
So far, we’ve looked at fields from a few charges, apart from the field along the axis from a uniform ring 
of charge.  What if the charge is only on part of the ring?  Let’s find the field at the center from a 
uniformly charged arc of a circle, radius R, with charge density λ coulombs/meter from 0θ− to 0.θ+  

The strategy is to find the electric field from one small 
length of the arc, then add all the small arcs—in other 
words, do an integral. 

The length of arc between θ and dθ θ+ has length Rdθ
and hence charge Rdλ θ , so it gives a contribution to the 
electric field at the center of the circle of magnitude 

2/ /k Rd R k d Rλ θ λ θ= at an angle θ to the x-axis.  
From the symmetry of the problem, the total field must 
be along the axis, so we only need count the component 

( )/ cosk R dλ θ θ in that direction: evidently the total field from the whole arc has magnitude 

 ( ) 0/ 2sinE k Rλ θ=  

and points in the negative x-direction. 

It’s worth noticing that this field only goes down as 1/R, not 1/R2: if the radius is doubled, the distance is 
doubled but so is the amount of charge.  We’ll see this 1/R behavior in the next paragraph for an infinite 
line of charge, for a similar reason. 

Field from a Uniformly Charged Infinite Line 
This is a slightly more complicated version of the problem above: now r varies, andθ goes from / 2π−
to / 2.π   Again, from the symmetry, the total field must be directly outwards from the infinite line of 
charge, so we need only calculate the component in that direction.  

 For uniform line density of charge λ coulombs/meter, 
the amount of charge corresponding to a small angle dθ
as shown in the diagram is 

( ) 2tan sec .dy d R R dλ λ θ λ θ θ= =  This is at a distance 

secR θ from the origin (the point where we’re finding 
the field), so contributes an electric field there of 
strength 

2 2 2 2/ sec / sec / .kq r k R d R k d Rλ θ θ θ λ θ= =  

This must be multiplied by cosθ to give the x-direction component, then integrated from / 2π− to 
/ 2π  to give the total field: 
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/2

/2

2cosk kE d
R R

π

π

λ λθ θ
−

= =∫  

And of course it points directly away from the (positively charged) wire. 

If the wire is not infinite, the limits on the above integral are changed appropriately, and there is also an 
electric field component parallel to the wire, except at a point level with the center.  This component 
can be found by integrating in the same way.  Try drawing the lines of force for this case.  

Field from a Uniformly Charged Infinite Plane 
Think of the infinite plane of charge as made up of a huge number of lines of charge parallel to the y-
axis, each having charge density λ coulombs per meter, and along the x-axis there is a line density of µ
of these lines per meter.  This means that there is a area density of charge in the plane of σ λµ=
coulombs per square meter.  

Now, imagine that in the diagram above we used to calculate the field from an infinite line of charge, 
each bit of the charge line now represents lines of charge perpendicular to the paper—this is how we 
replace the line of charge by a sheet of charge.  Recall the electric field strength from charge q was 

2/kq r , that from a line is 2 / .k rλ  To find the field from the lines in the angle dθ , we now use the line 

density µ  in place of λ , so the number of lines in dθ is ( ) 2tan secdy d R R dµ µ θ µ θ θ= =  and their 

contribution to the electric field is 22 sec
sec
k R d

R
λ µ θ θ
θ

. 

The total electric field from the uniformly charged plane is therefore, taking the x-components:  

/2
2

0/2

2 sec cos 2
sec 2
k R d k

R

π

π

λ σµ θ θ θ π λµ
θ ε−

= =∫  

recalling that σ λµ= and 01/ 4 .k πε=  

So the electric field goes out from an infinite uniform sheet of charge perpendicular to it, and does not 
decrease with distance.  For a finite sheet, this picture is still good for distances small compared with the 
size of the sheet. 

A common situation (for example, inside a capacitor) is to have two parallel uniform sheets of charge, of 
equal charge density, but one positive and the other negative.  The distance between the sheets is much 
less than their size, so it’s a good approximation to take them as infinite.  The electric field is then easily 
found by superposition:  it is a uniform 0/σ ε between the sheets, and zero outside. 

Electric Fields and Conductors 
By definition, in a conductor there are charges that are free to move.  If there is an electric field, they 
will move. In electrostatics, all charges are at rest.  Therefore, in an electrostatic situation the electric 
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v  meters 

charge 

  v  

 If a fluid is flowing steadily at v meters/sec, the volume through an 
area dA perpendicular to the flow is  vdA m3/sec. 

v

 

dA


  

θ   

 If the fluid is flowing through a small area dA having its normal at an angle 
θ  to the direction of flow, the effective area seen by the flow is cosdA θ , 

the volume through the area is cosvdA v dAθ = ⋅




 m3/sec. 

field inside every conductor must be zero.   It also follows that the lines of force of the electric field 
outside the conductor must approach the surface perpendicularly, because if there were a parallel 
component, a current would flow in the surface.  

home 

4  Gauss’ Law 

Electric Flux:  a Watery Analogy 
The main concept in Gauss’ Law is electric flux.  What does this mean?  The word flux just means flow, 
for example an influx of people into a room means they’re coming in.  Before talking about electric flux, 
let’s look at something easier to visualize:  flow of water.  

We’ll begin by considering flow down a river.  Suppose we stretch a net across the river, a fisherman’s 
net with thin strings and approximately square small holes, so that all the water flowing down the river 
goes through the net.  For a steadily flowing river, the total flow through the net, in, say, cubic meters of 
water per second, doesn’t depend on whether the net is stretched flat across the river, or is curved by 
the current so that it bulges in a downstream direction—in either case, the total flow is all the water in 
the river.   (I’m assuming here that the strings themselves are thin enough not to affect the flow 
measurably.)  

One way to find the 
total flow is to add 
the flows through 
all the little 
squares.  We’ll 
assume the 
squares are small 
enough that the 
fluid velocity 
doesn’t vary 
significantly over 
one square: first, 
assume the little 
square is 
perpendicular to 
the direction of 
flow:  if the square 
has area dA square 
meters (it’s small), 
and the fluid is 
flowing at speed v 

http://galileoandeinstein.phys.virginia.edu/2415/home.html
http://galileoandeinstein.phys.virginia.edu/2415/home.html
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meters per second, then in one second a volume vdA cubic meters of fluid will flow through the square.   
But what if the square is not perpendicular to the flow?  Then what counts is the effective area the flow 
sees—if the normal to the square is at an angle θ to the flow, this effective area is cosdA θ .  

 The standard notation is to represent the area by a vector dA


 of magnitude ,dA  and direction 

perpendicular to the area, that is, along the normal.  (The sign is of course ambiguous—we have to 
decide which way it’s pointing on a case by case basis.) 

Then the flow across the small area dA


 is  v dA⋅




 (we have now chosen the vector dA


 to point 
downstream), and the total river flow F through all the holes in the net is 

 .F v dA= ⋅∫




 

It is important to realize that this total flow cannot depend on the detailed shape of the net:  it must be 
the same for all nets that completely span the river, so that all the river water passes through the net. 

Flow from a Point Source 
To take a slightly different example, consider filling a large deep swimming pool using a hose, the end of 
the hose being deep in the water.  We’ll assume there are no currents present except the water flowing 
out of the end of the hose, and that this outflowing water goes out equally in all directions: this could be 
achieved, for example, by covering the end of the hose with a porous ball, so the water flows directly 
outwards from this ball (we’ll ignore the obstruction presented by the incoming hose itself—suppose it’s 
really thin).   

Imagine now surrounding the source with a fishnet bag, a complete surface surrounding it, so all the 
water coming out the source goes through some hole in this fishnet.  It’s easy to see that if the hose is 
delivering F cubic meters per second, this will also be the total flow through the fishnet in a steady 
situation—water is not going to pile up inside the bag, it’s incompressible for all practical purposes.  

That is,  

F v dA= ⋅∫




 

and this integral is the same for any closed surface surrounding the source.   

At this point, we’ll abandon the fishnet picture, and talk a little more abstractly about integrating over a 

surface surrounding the source, with the increment of area denoted by  dA


 pointing outwards.  

In particular, let’s take a spherical surface of radius r surrounding the source.  Since we’ve said the 

water is flowing out symmetrically in all directions, it will have the same speed ( )v r  at all points on this 

centered spherical surface, and the flow vector will be parallel to the normal to the surface, so the total 
flow 
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24 .F v dA vdA v dA r vπ= ⋅ = = =∫ ∫ ∫




 

Therefore, 

 ( ) 2 ˆ.
4

Fv r r
rπ

=
 

 

Notice this is formally identical to the electric field from a point source: 

 ( ) 2
0

ˆ.
4

QE r r
rπε

=




 

 

This is why historically people talked about “electric flux”:  the electric field vector from a point charge 
looks exactly like the fluid velocity vector for an incompressible fluid flowing symmetrically outwards 
from a small spherical source.    

E


 v  

charge source 

For water flowing equally outwards in all directions from an underwater source, 
the vectors v denoting water velocity at each point in space form a pattern 

identical to that of the electric field vectors E


 from a point charge. 

Note:  Remember also this picture is a 2D representation of a 3D reality! 



22 
 

Specifically, the electric flux through a small area is defined in exact analogy with the flow of fluid 

through an area, it is just E dA⋅




, and the total electric flux through a closed surface with a single charge 
inside it is given by 

 0/ .E dA Q ε⋅ =∫




 

We know the integral doesn’t depend on which enclosing surface we choose, because the electric field 
vector is everywhere proportional to our water flow vector.  We know the constant is 0/Q ε because 

that’s what we get if we take a spherical surface, with the charge at the center: 

 2 2
0 0 0

1 1ˆ .
4 4

Q Q QE dA r dA dA
r rπε πε ε

⋅ = ⋅ = =∫ ∫ ∫
 



 

(The outward pointing unit vector r̂ is parallel to the outward pointing little area vector dA


.) 

We should mention that for a negative charge, the field lines of course point inwards: the fluid analogy 
is sucking the water out of the pool, a drain point.  

What if we have a closed surface that doesn’t include our point charge?  What is E dA⋅∫




 in that case?  

The answer should be obvious from the flowing water analogy:  if there is no source of water inside the 
surface, the water flowing in must balance the water flowing out in the steady state.  That is to say, if 

there is no charge inside a surface in an electrostatic problem, then 0.E dA⋅ =∫




 

Gauss’ Law for General Charge Distributions: Use Superposition! 

We’ve given a detailed account of the value of E dA⋅∫




 over a closed surface for the field from a single 

charge, it’s equal to 0/Q ε  if the charge is inside the surface, zero otherwise.  

But it’s easy to generalize, because any charge distribution can be represented as a (possibly large) 
number of point charges, and the total electric field is the linear sum of all the electric fields from these 
many point charges: 

 ( ) ( ) ( ) ( ) ( )1 2 3 4E r E r E r E r E r= + + + +
    

    

  

and therefore for a closed surface 

1 2 3 4E dA E dA E dA E dA E dA⋅ = ⋅ + ⋅ + ⋅ + ⋅ +∫ ∫ ∫ ∫ ∫
    

    

  

The first integral in the series will equal 1 0/Q ε  if the charge 1Q  is inside the closed surface, zero 

otherwise.  The same is true for all the terms in the series, so we conclude: 
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 ( ) 0
closed surface

total charge inside surface /E dA ε⋅ =∫




 

and this is Gauss’ Theorem. 

5  Using Gauss’ Theorem: Spheres, Lines, Planes 

Taking Advantage of Symmetry 
In general, integrating a vector flux over a surface is a daunting task, but in certain symmetric cases it’s 
very easy, and can then be used to find electric fields much more easily than by adding contributions 
from large (or infinite, in the case of a continuous distribution) numbers of separate charges. 

Spherical Shell 
 A good example is finding the electric field from a uniformly charged spherical shell, say charge Q and 
radius R.  Since the sphere is uniformly charged, it has perfect spherical symmetry, it is not altered by 
turning the sphere through some angle.  Therefore, the electric field must also be spherically symmetric.  
The only spherically symmetric electric field has the field pointing directly outwards (or inwards) from 
the center at all points.  

Let’s apply ( ) 0
closed surface

total charge inside surface /E dA ε⋅ =∫




  

to a spherical surface of radius r bigger than the sphere of charge, but with the same center.  

The field E


points outwards everywhere on the surface, so it’s parallel to dA


, and has the same 

strength everywhere on the sphere, by symmetry.  The total area of the sphere is 24 rπ , so the integral 

is equal to 24 r Eπ , and outside the sphere of charge: 

 ( ) 2
0

ˆ
4

QE r r
rπε

=




 

the same as for a point charge at the center.  It’s worth mentioning that since gravity is also an inverse 
square force, this same result is true for the gravitational field from a spherical shell of mass. (This can 
be proved using Coulomb’s Law or its gravitational equivalent, but it’s quite difficult—it’s done here.) 

What about the electric field inside the sphere?  We do the same trick: integrate over a spherical surface 
with the same center as the sphere of charge.  This time, though, there is no charge inside our smaller 
spherical surface, so the electric field must be exactly zero inside the sphere. 

The complete picture of the electric field for a uniformly charged shell  is therefore: 

http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/GravField.pdf
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Solid Sphere 
The key for any spherically symmetric charge distribution is superposition:  the distribution can be 
expressed as the sum of (or integral over) spherical shells.  The contribution from each shell is zero 
inside that shell, and equal to that from a point charge at the center outside the shell.  So, for the case 
of a uniformly charged (throughout the volume) sphere, outside the whole sphere the field is the same 
as if all the charge were at the center, inside the solid sphere, at distance r from the center, it’s the same 
field as from a point charge at the center equal to the amount of charge in a sphere of radius :r  in 
other words, there is no contribution from those shells the point is inside.   

This uniformly charged sphere is not a likely object to find in electrostatics, but it is exactly equivalent to 
the gravitational field for a sphere of uniform density, a much more realistic problem.  And, in fact, the 
electrostatic uniformly charged sphere was a subject of intense interest a century ago, as a possible 
model for the atom: before the nucleus was discovered, but it was already known that the atom 
contained negatively charged electrons, it was suggested that the positive charge was spread over a 
sphere, and the electrons were inside this sphere: this was called the “plum pudding” model.  

21/  outsideE r∝


 

Electric field vectors for a uniformly 
negatively charged  spherical shell 

no field in 
shell 
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L 

Electric field vectors and Gaussian surface 
of integration for a positively charged 

infinite straight wire 

For a nonuniform spherical distribution, the same approach works: the field at any point is equivalent to 
a point charge at the center equal to all the charge between the point and the center. 

Lines and Cylinders of Charge 
Gauss’ theorem works well for finding the electric field from an infinite uniform line of charge. From 
symmetry, the field lines must be directed perpendicularly to the line of charge, and the field strength 
can only depend on distance from the wire.  For our Gaussian surface, we take a cylinder of length one 
meter and radius r, the wire running along the axis of the cylinder.   

The total area of the cylinder is 2 rπ
so, using 

0
surface

. (enclosed charge)/E dA ε=∫



 

the enclosed charge, 

( ) 02 /rLE r Lπ λ ε=
 

from which 

( )
0

.
2

E r
r
λ
π ε

=
 

(Easier than using Coulomb’s Law for 
the field from each increment of charge and integrating!) 

This same method applies for finding the electric field from a uniformly charged cylinder of charge.  Just 
imagine the wire in the picture above being replaced by a fatter wire, then by a hollow cylinder, but 

staying inside the Gaussian cylindrical surface we integrate over.  We get the identical result for ( ) ,E r  

now we must interpret λ as the charge on one meter of the whole cylinder.  If this is a hollow cylinder, a 
pipe, taking a Gaussian surface inside it, the surface encloses no charge, so the electric field inside a 
hollow cylinder from the charge on the cylinder is zero. 

Coaxial Cable  
Of course, we could add a line of charge, or even another cylinder, inside our charged cylinder, in which 
case the total electric field would be the sum of the electric fields from the two cylinders, using 
superposition.  In fact, this is a coaxial cable, the cable used to transmit TV signals. etc.  A coaxial cable 
(the word means “same axis”) has a central copper wire, inside a hollow copper cylinder (see figure 
below).  Between the two is a nonconducting dielectric—we’ll discuss dielectrics shortly.  The 
transmission of electromagnetic waves, the TV signal, is of course not an electrostatic situation, but 
nevertheless Gauss’ Law still holds, and at any moment there are equal amounts of charge per unit 
length of cylinder on the surface of the central wire and the inner surface of the cylinder, and 
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E


 

Typical electric field configuration in a coaxial cable, 
usually a copper cylinder and a central copper wire.  
The charge is on the outside surface of the inner 
conductor, the inside surface of the outer conductor. 

consequently an electric field as shown (there are also currents in the copper producing magnetic 
fields—more about that later).   

 
The electromagnetic fields are 
entirely contained inside the cable, 
in contrast to signals sent down a 
pair of wires, and the outer cylinder 
protects the signal from external 
interference (and makes 
eavesdropping more difficult—you’ll 
have to cut into the cable).    

 

 

 

 

 

 

Uniformly Charged Plane 
Gauss’ Law makes it extremely easy to find the electric field from a uniformly charged plane, in contrast 
to the tedious integration necessary using Coulomb’s law to find the electric field from each little area of 
the plane and taking the sum. 

 

E


 

Electric field from a uniform plane of charge 
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From symmetry, taking the plane to have infinite extent, the field must be perpendicular to the plane as 
shown above, where the plane of charge is seen in cross section, that is, the plane is perpendicular to 
the paper.   Of course, the charge is distributed uniformly over the plane, with area density σ coul/m2.  
To use Gauss’ Law, we choose a surface shaped like a pillbox, represented in cross section by the 
rectangle above.  The top and bottom surfaces both have area ,A  and an area A  of the charged plane 

is included.  The electric field is parallel to the area vectors on both the top and bottom surfaces, so the 

total contribution from those surfaces to 2E dA EA⋅ =∫




.  There is no contribution to the integral from 

the sides of the pillbox, as the electric field is parallel to those sides, thus E dA⋅




 is zero there.  It follows 
immediately that  

 0 0
surface

2 / , so  / 2 .E dA EA A Eσ ε σ ε⋅ = = =∫




 

For an actual physical finite plane of charge, this value of E  is a good approximation at points close to 
the surface relative to the size of the plane.   For distances large compared to the extent of the plane, 
the field becomes more like that from a point charge.  

A much more common scenario is to have two parallel sheets of charge, one positive and one negative, 
having the same charge density.   

Let us consider first the case where both sheets are insulators, the charge has been sprayed on.  On 
bringing the two sheets close, the charges will be unable to move, and the electric fields from the two 
planes add, from the Principle of Superposition, giving: 

 

Actually, the sheets are usually conductors—in fact, almost all capacitors have this basic structure.  To 
see how the charges move as the conducting sheets are brought close, we’ll first look at the charge 
distribution on a single conducting sheet of finite thickness: 

E


 

Electric field from two uniform parallel planes of charge: one positive, one 
negative, with equal charge densities σ : the field 0/E σ ε=  between the 

planes, 0E =  outside the planes. 
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Suppose we now take two such conducting planes with equal charge densities, but of opposite signs, 
and put them close and parallel.  What happens?   

The positive and negative charges will attract each other, and move to be as close together as possible. 
That is, all the charges will move to the inside surfaces of the conductors: 

 

Note that the charge density σ on the lower conductor’s top surface generates a field of strength 

0/σ ε . This can be understood by considering a pillbox Gaussian surface which encloses that top surface 

(see diagram):  the Gaussian surface has field E  through its top, but no electric field through its bottom, 
which is inside the conductor, where 0.E =   

E


 

Electric field for two uniformly charged plane conductors of finite 
thickness: no field inside the conductors, or outside the two planes: the 
charges are moved to the inside surfaces by their mutual attraction. 

E


 

Electric field from a uniformly charged plane conductor of finite thickness:  
in the electrostatic situation, there is as always no field inside the 
conductor, the charges form equal layers on the two sides 
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6  Gravitational and Electrostatic Potentials 

The Gravitational Analogy 
As we’ve discussed, the gravitational field from a point mass and the electrostatic field from a point 

charge both go down with distance as 21/ ,r  and both fields satisfy the Superposition Principle.  It might 

seem at first glance that electric fields are just going to follow the patterns set by gravitational fields— 
but of course, there’s one huge difference!  Electric charges can attract or repel, but there’s no 
gravitational repulsion between masses.   

You might think antimatter would repel matter, but experimentally it doesn’t—all kinds of matter attract 
gravitationally.  Then there’s the so-called Dark Energy in the universe, which apparently causes everything to fly 
apart, but is only important on a cosmic scale.  And, don’t confuse that with Dark Matter, an as yet unidentified 
kind of matter we know must be there because its gravitational attraction is clear from the orbiting rate of stars in 
rotating galaxies, but it also has little effect on anything much smaller than a galaxy. 

Near-Earth Gravitational Potential mgh and Its Electrical Equivalent 
Let’s begin by reviewing the Earth’s gravitational field in this room.  We can take it to be uniformly 
downward: a mass m will feel a downward force ,mg  and doubling the mass doubles the force.  That is, 

the gravitational force on a mass m  is F mg=




 where g is a downward pointing vector of length ,g  

the gravitational field strength.   

It takes work to lift a mass m from a point A to a higher point B against this gravitational pull:  to be 

precise, as discussed earlier, it takes work ( )
B

A
W mg ds= − ⋅∫





, where ds


is an incremental step on the 

path, and to move the mass at a steady rate we need to exactly counteract the gravitational force, that 

is we must exert a force mg−


, so the work done for the step .ds mg ds= − ⋅
 



 Since this is a dot product, 

the only displacement that requires work is that in the upward direction, and it is easy to see that the 

total work done against the gravitational force on raising a mass m  from A to B is ( )B AW mg h h= − , 

where Bh  is the height of point B above the ground.  This work is stored by the system—it can be 

recovered simply by allowing the mass to fall back: it accelerates and gains kinetic energy equal to the 
work needed to raise it in the first place.  That’s why it’s called “potential energy”. 

This leads naturally to the definition of a gravitational potential 

 ( ) ,U h gh=  

so ( )mU r mgh=


 is a measure of the potential energy stored by a mass m  as a function of position.  

Following normal usage, we denote height by h  rather than .z   There is of course the usual ambiguity 
concerning what “ground level” we take as 0h = , but it is irrelevant in practice as we’re always 
interested in potential energy differences.  



30 
 

The electrostatic analogy to gravity near the Earth’s surface is the electric field in the region above an 
infinite, uniformly negatively charged insulating plane: we covered this in lecture 3.   

-  

The electric field has uniform strength and points towards the plane. The force on a charge q is .F qE=
 

 

Since there is no reason for this plane to be horizontal, we’ll measure distance away from the plane as 
,z  so ẑ is a unit vector normal to the plane.  By precise analogy with the gravitational discussion, the 

work needed to move a charge q along a path in this field is  ( )B

A
W qE ds= − ⋅∫




, and, without further 

ado, we can define an electrostatic potential  

 ( ) ( )0/ 2V z Ez zσ ε= = ,  

where σ  is the charge density (this is for a charged plane, see diagram: remember that for a uniform 
layer of charge σ on the surface of a thick conductor, there will be no factor two in the denominator, 
because there is no field going into the conductor, all the field from the charge layer is on one side). 

Now this was a negatively charged plane, so a positively charged particle projected upwards from this 
plane will follow a parabolic path and come back down, just as a mass will in the gravitational field in 
this room.   

A negatively charged particle, on the other hand, will follow a parabolic path upwards!  To see this, 
consider a particle projected parallel to the plane but some distance above it.  Particles with the same 
mass but opposite charges will follow paths that are up-down mirror images of each other. 

In practice, a uniform electric field as described above is well approximated in the space between two 
oppositely charged parallel planes.  It is also a good approximation to the field near the surface of a 
charged conductor—near enough for the conductor to appear flat.   

E


 

Electric field from a uniform negative plane of charge, 
showing trajectories of charged particles. 

ẑ
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Gravitational Equipotentials are Contour Lines 
Detailed maps of the countryside for hiking often include contour lines joining points at the same height 

,h in our language, points at the same gravitational potential. Walking along a contour line means you 

do no work against gravity. Of course, on level ground the force of gravity on you is balanced by the 
normal force from the ground, but if the ground is sloping and you walk uphill a distance s∆ you do 

work against the component of gravity parallel to the ground,  .mg s mg h− ⋅∆ = ∆




 For a given speed, 

you work at the fastest rate (as of course you know!) by going straight uphill, meaning perpendicular to 
the contour line.  

Notice from the map that the distance between contours is a measure of the steepness of the slope, an 
(inverse) measure of the strength of the gravitational field you are working against.   

Simple example: for a map of a conical hill, the equipotentials would be concentric circles.  

 

The Gravitational Analogy at Larger Distances 
At distances comparable to the size of the Earth, the gravitational field has the familiar inverse square 

form ( ) 2ˆ /Eg r GM r r= −
 

.  

The work done, and therefore the potential energy difference, on a path in this field is (as discussed 
above) 
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( )( ) ,
B

A
W mg r ds= − ⋅∫



 

 

except that the gravitational field is no longer constant.   

As before, the dot product denotes that work is only done when there is displacement in the direction of 
the force:  here this means displacement in the radial direction, directly outwards.  So, if A is at Ar



 from 

the center of the Earth, and B at ,Br


 the gravitational potential energy difference for a mass 1m =  is 

 ( ) ( ) 2 2

ˆ 1 1 .
B B

A A

r r

B A E E E
B Ar r

r ds drU r U r GM GM GM
r r r r

 ⋅
− = = = − 

 
∫ ∫






 

 

The very reasonable convention is to take the zero of gravitational potential energy to be at infinity, 
because in calculating total potential energies, we don’t want to have to take account of stars in the 
next galaxy. This means that, outside the Earth’s surface, the gravitational potential energy from the 
Earth’s field is  

 ( ) , .E
E

GMU r r r
r

= − >


 

A mass resting at the Earth’s surface has therefore a negative total energy (potential plus kinetic), a 
mass at rest far away has essentially zero total energy—so to get a mass away from the Earth it must be 
given a kinetic energy sufficient to get it up the potential hill: this corresponds to the escape velocity. 

We are thinking in three dimensions and the equipotentials here are spherical surfaces.  

Point Charges and Superposition 
Switching now from gravity to the electrostatic analogy, the potential difference between two points in 
the field of a point charge Q  (or outside a spherically symmetric charge distribution having total charge 

Q ) is: 

2 2
0 0 0

ˆ 1 1 .
4 4 4

B B B

B A

A A A

r r r

r r
B Ar r r

Q r ds Q dr QV V E ds
r r r rπε πε πε

 ⋅
− = − ⋅ = − = − = − 

 
∫ ∫ ∫
 

 

 






 

In words, as with gravity, the potential difference is the work done against the field per unit 
charge/mass on moving from point A to point B. 

For an actual point charge, assuming one could exist, it is clear that for small enough r the formula must break 
down (there cannot be infinite energies!) but even for electrons within atoms the formula is extremely accurate.  
(It does break down at electron scattering energies reached in particle accelerators: the field energy density 
becomes strong enough that from quantum mechanics virtual particle creation plays a significant role, this is 
termed quantum electrodynamics.) 

Thus the potential in the electric field of a point charge is (taking it zero at infinity): 
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 ( )
04

QV r
rπε

=


 

Notice the sign!   

If a positive charge is released in the field of a fixed positive charge, it will shoot away, and have kinetic 
energy far away.  This is the opposite of the “escape velocity” scenario—that applies for a negative 
charge in the field of a fixed positive charge. 

The Principle of Superposition works for potential energies just as it does for electric fields, since the 
potential energy difference is the sum of contributions from the different fields in the integral, so 

( ) 31 2

0 1 2 3

1
4

QQ QV r
r r rπε

 
= + + + 

 



  

and for continuous charge distributions, the sum becomes an integral. 

An Atomic Energy Unit: the Electron Volt 
For everyday life, the joule is a convenient unit of charge—one amp is a charge flow of one coulomb per 
second. Similarly, the volt, one joule per coulomb, is a convenient potential energy unit. But when we’re 
analyzing energy transfer at the molecular level, the natural unit of charge is the electron charge (or 
minus it). 

7  Field Lines, Equipotentials and the Dipole 

Getting the Electric Field from the Potential 
Important! It’s usually easier to compute the potential than the electric field for a given charge 
distribution, since, for the field, one must sum over vectors. A very simple example is finding the 
potential on the axis of a uniform ring of charge—for a point on the axis, all the charge is at the same 
distance so no integral is necessary. You can go on (see next paragraph) to easily find the electric field 
component pointing along the axis (but the perpendicular field is tougher!)  

So, suppose we have the potential as a function of position.  How do we use it to get the electric field at 

a particular point ( ), , ?x y z  

Write the formula for potential difference between two points separated by an infinitesimal distance 
:dx  

 ( ) ( )
( )

( ), ,

, ,

, , , ,
x dx y z

x
x y z

V x dx y z V x y z E ds E dx
+

+ − = − ⋅ = −∫




 

from which 
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( ), ,

x

V x y z
E

x
∂

= −
∂

 

where the special derivative symbol means partial differentiation: V is a function of three variables, but 
we’re holding two of them constant—only allowing x  to vary. 

This formula, plus those in the other two directions, are often combined in a vector notation, written: 

 ,  or .E V E V= −∇ = −grad
  

 

In other words, the electric field in a particular direction is the negative of the slope of the potential in 
that direction: it’s worth looking at a couple of examples to see this in action. 

Potential for Two Charges 
First, consider two equal positive charges, let’s say on the x -axis at a+  and ,a−  and think about the 

electric potential and electric field on the axis.  This keeps it simple: the electric field points along the 
axis.   The potential plotted along the x-axis looks like: 

 

 

Over to the far right, the potential is sloping downwards, so the E


field is pointing in the positive x -
direction.  Exactly half way between the charges, the potential bottoms out, that is, its slope is zero: so 
the electric field is zero at that point—not surprising, since a small positive charge there will be repelled 
equally by the two positive charges.  In fact, the electric field changes sign (it’s minus the potential 
slope) on going through that point.  Note as well, though, that the value of the potential at that low 
point is not zero:  if we moved away from that point in the y -direction, we’d be going downhill.  (Check 

that by finding the electric field direction at a point on the y -axis.) The second example is a positive 

Potential from two equal positive charges plotted on line through center of charges 

V(x) 
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charge at ,a+ a negative charge at a−  on the x -axis.  Now the potential along the axis looks like 

this:  

In this case, the electric field between the two charges is always strong and in the negative x -direction. 

Revisiting the Dipole: Field Lines and Equipotentials 
If you sprinkle iron filings in the field from a magnet, they line up along the field direction, and you can 
draw what Faraday and Maxwell called “lines of force”, parallel to the field at each point, to construct a 
picture of the field. We’ll call them field lines (a more usual term).  

We drew the field lines in lecture 3, now we’ll add the equipotentials. Recall from the discussion above 
that they intersect at right angles, so, for example, for a pair of opposite charges we find: 

Potential along line of centers of two equal but opposite charges 



36 
 

 

Note: Field strength and line spacing: this is a two-dimensional cut through a three-dimensional field. We can see 
where the field is strongest because the field lines are more concentrated. But this is tricky! We can draw field 
lines where we want. Furthermore, consider the field from a single small charged ball. If we draw the lines coming 
from the ball’s surface equally spaced, then In this two-dimensional representation, the spacing between adjacent 
lines increases with distance proportional to ,r suggesting the field strength goes down as 1/ .r  But that isn’t 

right, the lines are really coming out of the ball in three dimensions, and their density, the measure of field 

strength, actually goes down as 21/ .r  So these two-dimensional representations of three-dimensional fields can 
be useful, but be careful—they’re not quantitatively correct. 

Dipole Moments and Potential 
Non-ionized molecules are overall electrostatically neutral (no net charge) but can have dipole moments, meaning 
the center of the positive charge is not the center of the negative charge. As in the diagram above (and previously 
mentioned in lecture 3, where we discussed a dipole in an external field) we can represent the dipole moment as 

equal but opposite charges Q± separated by a vector distance .


  

The dipole moment is written  

 .p Q=




  

The potential from the two charges at a point r measured from the positive charge as origin is  

Electric field lines of force and equipotentials for a dipole:   
charges Q, -Q a fixed distance  apart 
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( )
0

1 1 .
4

QV r
r rπε

 
 = −
 + 











 

If we assume we are at a distance much greater than the size of the molecule ,r   we 

can approximate 

2 2
22 1 ,rr r r r

r
 ⋅

+ = + ⋅ + ≅ + 
 





 

 

    

and  

2 3

1 1 11 .r r
r r r rr
 ⋅ ⋅

≅ − = − 
+  

 

 

 







 

Putting these together, the potential at a point r  from a dipole of strength p Q=


  with r   is 

( ) 3 2
0 0 0

1 1 1 cos .
4 4 4

Q Q r pV r
r r rr

θ
πε πε πε

  ⋅ = − ≅ =
 + 















 

Notice the dipole electric field strength, ,E V= −∇
 

decreases for r   as 31/ .r   

For large distances, if an ionized molecule has total charge totQ the field strength very far away has dominant 

contribution 2
tot / ,Q r this is sometimes referred to as the monopole field to distinguish it from the dipole field.  

For general compact charge distributions, there are more terms, starting with the quadrupole, down by another 
factor of 1/ r : think for example of charge 2Q at the origin and two charges Q− displaced equally from the 

origin in opposite directions. 

8  Capacitance 

Introduction: Charging a Sphere; Definition of Capacitance 
A capacitor is a device for holding electrical charge.  Of course, any electrically isolated macroscopic 
object can hold some charge, but the term capacitor is only used for conductors, so the whole object is 
raised to the same potential when the charge is added.  

Perhaps the simplest example of a capacitor is a conducting sphere of radius .R   As we found earlier, a 
charge Q  on the sphere generates an electrical field outside the sphere of magnitude 

( )( )2
01/ 4 /E Q rπε= , so the potential at the surface of the sphere ( )01/ 4 / /V Q R Q Cπε= =  with 

r
 




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 04 .C Rπε=  

That is, the charge Q  of the sphere is linearly proportional to the voltage ,V  and the coefficient 

/Q V C=  is termed the capacitance. 

In our system of units, the charge is measured in coulombs, and the capacitance which is raised in 
potential by one volt if one coulomb of charge is added is called a one farad capacitor, in honor of 

Michael Faraday.  This is a pretty big sphere: recall 9
01/ 4 9 10πε = × , so if 04 1,C Rπε= = we have 

99 10 m,R = × more than ten times the radius of the Sun! 

If we need to store significant quantities of charge, spheres are not the best way to go (although a 
sphere is used in the van der Graaff machine).   

Parallel Plates 
Far more common are capacitors made of parallel plates of conductors:  in the simplest case, two flat 
plates of area A  are placed parallel a distance d apart, where d  is much smaller than the linear size of 
the plates.  This configuration was discussed in detail in lecture 5, so we’ll just take the results from 
there.  We take it that d  is sufficiently small that the field between the plates is uniform, and the field 
outside the plates from the charge on the plates is negligible.  

When connected to a battery, one plate to the positive and one to the negative terminal, charge flows 
on to the plates in equal (but of course opposite sign) amounts: if charge Q  flows to the positive plate, 

it has charge density /Q Aσ = , giving a uniform electric field outwards from each side 

0 0/ 2 / 2 .E Q Aσ ε ε= =   This is the field from the positive sheet only, the field between the sheets has 

an equal contribution from the negative sheet, so  

 0/ .E Q Aε=  

The voltage difference between the plates is then 

 0/ .V Ed Qd Aε= =  

It follows immediately from the definition of capacitance, / ,V Q C=  that 

 0 /C A dε=  

for the parallel plate capacitor. 
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E


 

Typical electric field configuration in a coaxial cable, 
usually a copper cylinder and a central copper wire.  
The charge is on the outside surface of the inner 
conductor, the inside surface of the outer conductor. 

Capacitance of a Coaxial Cable 
Recall from lecture 5 (where this diagram appears) the field configuration in a coaxial cable: the electric 

field strength between the inner solid 
copper wire and the outer encasing 
copper cylinder is given by 

( ) 0/ 2 ,E r rλ π ε= from Gauss’ Law, 

where λ is the charge per meter on the 
wire (and the cylinder, of course).   The 
voltage difference between the two 
cylinders is therefore, from a simple 
integration

( ) ( ) ( )
2

1

0 2 1/ 2 ln /
r

r

V E r dr r rλ πε= =∫  

so the capacitance of a length  is 

( ) ( )
( )

0 2 1

0 2 1

/ / 2 ln /

2 / ln / .

C Q V r r

r r

λ πε

πε

= =

=





      

As we shall see later, this is important in 
analyzing the transmission of 

electromagnetic waves in coaxial cables—and that’s the way the signal gets to your TV. 

Capacitors Big and Small 
With parallel plates, we don’t need a capacitor bigger than the Sun to get one farad.  But it still has to be 
pretty big, if we keep the gap between plates an easily visible size, say 0.1mm.   The reason is that 0ε is 

so small (8.85x10-12).  The area has to be of order square kilometers!  Traditional commercial capacitors 
lessen the gap by having plates separated by a thin layer of insulator (which is also a dielectric—see 
later) and roll up the plates into a many layered roll.  Still, it’s difficult to get much above millifarads this 
way in a compact capacitor.   

A real breakthrough came some years ago with the realization that aluminum oxidizes almost 
immediately on exposure to air, that the oxide layer that forms is about a micron (10-6 meters) thick, and 
is a good insulator. Capacitors were then made by putting conducting paste on to oxidized aluminum.  
The paste was one plate, the aluminum metal the other.  More recently, capacitors have been 
manufactured with a layer of insulator a few atoms thick. This is another factor of 1,000 down in 
thickness.  At the same time, the area has been vastly increased by using activated carbon, a solid which 
is actually many tiny granules pressed close, but with most of their surface still exposed, to give 
hundreds of square meters of surface in an ordinary size jar (your lungs have a similar structure—and 
comparable surface area, necessary to absorb oxygen at the required rate).    



40 
 

The only drawback is that the insulating layer cannot resist more than three volts or so, this being the 
typical voltage to excite an atom.  However, these new capacitors are measured in kilofarads, and will 
soon be competitive with conventional batteries in hybrid cars.  One advantage over batteries is the 
rapidity with which capacitors can absorb and deliver power. 

At the other end of the scale, dynamic rapid access memory (DRAM) in computers stores information in 
millions of capacitors of microscopic size, arranges in rows and columns on a chip.  These are measured 
in femtofarads (10-15 farads).  So capacitors are currently being manufactured over a range of sizes 1018! 

Combining Capacitors in Circuits: Series and Parallel 

 

Two capacitors that appear one after the other in a circuit, as shown above, are said to be in series.  
They can be replaced by a single capacitor which will behave identically, meaning if the two were in a 
black box with just the wires coming out the side, by testing with various voltages and noting the charge 
flowing in, you wouldn’t be able to tell.  But, given 1 2,C C  what is the value of the equivalent capacitor 

C ?  The key is to note that if the 1 2C C+  combination is subject to the same external voltage as the 

single ,C  the same charge must flow in—otherwise, the C  wouldn’t be equivalent.  Also, equally 

important, in the combination the Q ’s on the two capacitors must be the same, since the Q  from the 

battery on 1C will draw Q−  from 2C  as shown.   

Now consider the total voltage drop on going around the circuits.  For ,C   it’s / .V Q C=  For 1 2 ,C C+  

there is voltage drop across each capacitor, so the total 1 2/ / .V Q C Q C= +   These voltage drops for 

the two circuits are equal, so for capacitances in series, 

C C1 

Two capacitors 1 2,C C  in series and the equivalent single capacitor .C   The 

charges on 1 2,C C  must be the same, since the charge on the plate of 1C  not 

connected to the battery must come from 2.C  Since the single capacitor C  

behaves identically, for given V  it also draws charge .Q  

V 

Q 
Q Q 

-Q 
-Q -Q 

C2 

V 
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 1 2

1 2

1 2

1 1 1 ,

   (series).

C C C
C CC

C C

= +

=
+

 

For capacitances in parallel, at given voltage ,V  the total charge drawn from the battery by the two 

capacitors, 1 2Q Q+  must equal the charge Q  drawn by the single equivalent capacitor, from which  

 

 
1 2

1 2

,

  (parallel).

Q QQC
V V V

C C C

= = +

= +
 

Simple Picture of Adding Two Capacitors 
Suppose we take two capacitors which are physically parallel metal plates: the capacitances are 

1 0 1 1 2 0 2 2/ , /C A d C A dε ε= = .   First, take two for which 1 2.d d=   Place them side by side, and connect 

the two top plates, then the two bottom plates: put them in parallel.  Obviously, the combined capacitor 
C  has the same 1 2 ,d d d= =  and 1 2 ,A A A= +  so 1 2.C C C= +   Next, take two having 1 2A A=  and 

put them in series:  For the combined ,C  1 2 ,A A A= =  1 2 ,d d d= +  the result follows. 

 

C1 

Two capacitors 1 2,C C  in parallel and the equivalent single capacitor .C   The 

voltages across 1 2, ,C C C are all .V    Since the single capacitor C  and the 

parallel pair 1 2,C C behave identically, the total charge 1 2Q Q+  drawn from the 

battery must equal .Q  

V 
Q2 Q1 

-Q1 -Q2 
C2 C 

Q 

-Q 
V 
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9  Energy in Capacitors 

Work Done in Charging a Capacitor 
Suppose we put a charge Q  on a capacitance ,C  thereby raising its potential to / .V Q C=   Obviously 
this takes work: as soon as there is any charge on the capacitor, it will repel further charge we put on, so 
we need to work against that electrostatic repulsion.   

To be precise, when the capacitor has charge q  it is at potential / ,q C  and bringing in from far away an 

incremental additional charge dq  requires work equal to the potential energy that small extra charge 

has gained, that is, / .dW qdq C=  

The total energy stored in the capacitance once it has charge Q  is equal to the total work needed to get 

the charge there, that is, 

 
2

1
2

0

,
2

Q qdq QU QV
C C

= = =∫  

using / .V Q C=   

This Energy is Stored in the Electric Field! 
To show this claim makes sense, we’ll consider a few examples, starting with the parallel plate capacitor. 
Suppose as usual we have uniformly charged  (σ coulombs/sq m) plates of area A (so Q Aσ= ) 

separated by a distance d  which is much smaller than the linear dimensions of the plates,  so we will 
have a constant electric field inside (meaning between the plates), and a negligible field from the 
charged plates outside.  Then the energy  

 2 21 1 1 1
0 02 2 2 2 volumeU QV A Ed E Ad Eσ ε ε= = = = ×  

where we used  0,V Ed Eσ ε= = .  

This turns out to be always true: an electrostatic field is a store of energy, with energy density 21
02 Eε per 

unit volume. 

Field Energy for a Charged Sphere 
To see that the idea of storing energy in an electric field is not just about parallel plates, consider a 
spherical conductor of radius R  carrying a charge .Q   The sphere is then at potential 0/ 4 ,V Q Rπε= so 

the energy stored is 21
02 / 8 .U QV Q Rπε= =  

We can derive this value as the total electric field energy density: since it’s a conductor, there is zero 
field for ,r R<  so the total electric field energy 
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2 2

2 21 1
0 02 2 2

0 0

4 .
4 8R R

Q QU E dv r dr
r R

ε ε π
πε πε

∞ ∞  
= = = 

 
∫ ∫

 

(Here dv  is the volume increment.) 

*Energy Stored in the Field for Two Charged Spheres 
If we have two such spheres, one positive and one negative, far apart, the total energy in the electric 
field is just twice that for a single sphere.  If they’re on top of each other, there is no field at all! (one 
could be a thin skin on the other.)  If we draw them distance d  apart, ,d R  their own fields 

dominate out to a distance of d  or so from each sphere center, beyond which they approximately 
cancel, leaving the much weaker dipole field. Compared with the potential energy for the spheres being 
infinitely far apart, then, it’s as if they have each lost the field energy which was outside a sphere of 
radius d  or so, (which would be the total field energy of a charged sphere of radius ,d ) and since there 

are two of them, the field energy lost  is about 2
0/ 4Q dπε .  This, then, is the energy that must be 

supplied to get their separation from d  to infinity.   

Of course, the above is a very hand waving argument, and not to be trusted within factors of 2, etc.—
but the answer does happen to be right.  

Pulling a Disconnected Charged Capacitor Apart 
Thinking in terms of energy stored in the electric field gives some insight into the force needed to pull 

capacitor plates apart.  Suppose we pull the plates 
from separation d  to 2 .d    

Assume first that the capacitor is charged but 
disconnected, so the charge Q  stays the same. 

Then the field strength 0 0/ /E Q Aσ ε ε= =  

remains constant, but there is now an extra volume 
Ad  of field— new field—the field energy storage has doubled. 

Question:  The increase in energy is 1 1
2 2QV QEd= .  But, assuming we held one plate fixed and moved 

the other, which has charge ,Q  through distance ,d  and the electric field between the plates is ,E  
where does the ½ come from? 

Answer:  The field between the plates, remember, is a superposition of equal fields from the two plates. 
When we move one plate, it doesn’t do work against its own field, which moves with it.  

Suppose now both plates were equally positively charged: work can be extracted from this system by 
the plates pushing each other apart.  What’s going on with the fields now?  In this case, there is constant 
field outside the plates, no field in between.  As they move apart, the zero-field region expands at the 
expense of the field region, so field disappears.  That’s where the work done by the pushing plates 
comes from. 

Q−
 

Q  
d  
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Pulling a Connected Charged Capacitor Apart 
Suppose now we pull apart the plates of a charged capacitor keeping it connected to the battery, so V
doesn’t change.  How does this affect the electric field?  Since ,V Ed=  if we go from d  to 2 ,d  the 

field strength drops by a factor of 2, since the voltage V  is constant, but the volume of field doubles.  

Since the field energy is proportional to 2 ,E  not ,E  the total energy stored in the field volume is down 

by a factor of 2.  This should be no surprise:  remember we can write 21
2 ,U CV=  and doubling d  

halves the capacitance, so at constant V  it halves the energy stored.  

But it did take work to pull the plates apart at constant :V  where did that energy go?  The answer is:  
into the battery!  On halving the capacitance at constant voltage, we must have lost half the original 
charge .Q   This 1

2 Q  goes into the battery against the voltage ,V  so the battery is recharged with 

restored energy 1
2 .QV    

But only half that energy pumped into the battery came from energy stored in the capacitor’s electric 
field: the rest came from work done dragging the plates apart.  Let’s check that: if the plates have 
separation ,x  the field strength / ,E V x=  the field from a single plate is half that,  / 2 ,V x  and the 

charge on the plates is proportional to .E   Therefore, since the initial force on one plate was 
2

0/ 2 / 2 ,QE Q Aε=  and this was at separation ,d  so at an increased distance x  it is down to 

( )( )2 2 2
0/ 2 /Q A d xε , and the work needed to double the plate separation is  

 
22 2 2 2

2
0 0

.
2 4 4

d

d

Q d Q d QU dx
A x A Cε ε

∆ = = =∫  

The bottom line is: the work done pulling the plates apart, plus the energy consequently lost from the 
capacitor, both go into recharging the battery—no energy has disappeared. 

Dielectrics 
Typically, capacitors have some material between the plates, if only to keep them apart and prevent 

electrical shorting.  This way the plates 
can be placed closer together, 
decreasing d  and thereby increasing .C   
But it turns out that the right material 
increases C  in another way as well: all 
materials respond to some extent to an 
electric field.  Remember the water 
molecule is an electrical dipole, so in an 
electric field it will tend to line up with 
its positive − + end closer to the 
negatively charged plate, in a parallel 
plate capacitor.  But even molecules that 

A slab of dielectric 
between parallel 
charged plates. The 
dielectric molecules 
distort so that negative 
charge moves slightly 
towards the positive 
outside plate, 
equivalent to adding an 
extra layer of negative 
charge on that surface, 
and a positive layer on 
the right. 

   -  + 



45 
 

are not dipoles will become dipoles to some degree in a field, since all molecules have positive nuclei 
and negative electrons, and the different charges will be displaced in opposite directions by the field.  If 
we think of a neutral solid as a block of positive charge on top of a block of negative charge, this has the 
effect of moving the blocks in opposite directions, with the result that charge cancellation still holds in 
the bulk, but there are layers of negative charge and positive charge respectively on the sides next to 
the positive and negative plates.   

These charges are of course still bound inside their molecules, so cannot get away—but they have the 
effect of partially cancelling the charges on the plates ,Q  so the electric field is lessened, therefore the 

voltage corresponding to given charge on the plates is less, so the capacitance is enhanced.  

Relative Permittivity 
The relative permittivity K  (a.k.a. the dielectric constant) is the factor for a given material by which the 
capacitance  increases on introducing the material to fill the gap between the plates:  0.C KC=  In 

other words, it’s a measure of how much a material permits an applied magnetic field to store energy in 
it, relative to the vacuum.  

As you might guess, it’s very high for water, 80, (the molecular dipole moments align, at least for a 
steady field) but water is not a great choice for a dielectric, for obvious reasons.  For many ordinary 
materials (paper, oil, glass) K  is around 4, well worth using. 

Note that the charges within the dielectric move towards the opposite charges on the capacitor plates, 
so pulling the dielectric out will take work against this attraction.  For a charged but disconnected 
capacitor, this work goes into building up the larger electric field between the plates corresponding to 
the lower capacitance but same Q  when the dielectric is gone.  If the dielectric is removed with the 
capacitor connected to a battery, the work goes into charging the battery. 

Capacitors for Energy Storage 
There have been breakthrough in capacitor design in recent years, so now kilofarad capacitors are 
available. However, currently (2024) storage capability is 5 – 10% that of a lithium ion battery per 
kilogram, although current design developments using carbon nanotubes could substantially increase 
that.  

There are some short-hop bus systems using capacitors, 
https://en.wikipedia.org/wiki/Capacitor_electric_vehicle, the low storage capacity is good for a mile or 
two, and charging is almost instant.  

The rapidity of discharge is also useful in situations where an explosive burst of power is needed.   

 

https://en.wikipedia.org/wiki/Capacitor_electric_vehicle
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10  Electric Charge and Current 

Electricity and Frog’s Legs 
• In 1771, Luigi Galvani, at the University of Bologna, was dissecting frog’s legs at a table that also 

had an electrostatic generator. He found by accident that the legs twitched in response to a 
charge, and were far more sensitive than the best 
electroscopes. He tried to detect atmospheric 
electricity.  

• He found instead that electricity was 
generated by touching the legs with dissimilar 
metals.  
 

 

 

 

 

Reviving Dead Criminals? 
Galvani’s  nephew, Giovanni Aldini, a showman, 
electrified corpses just after decapitation at a prison in 
London, with various muscular reactions. 

This was the inspiration behind Frankenstein. 

It also led to the belief that electricity was the “life 
force”, the essential non-material component of living 
matter, absent in ordinary inanimate matter. This idea 
was demolished by Volta. 

 

Volta’s Pile 
Galvani’s colleague Volta was the first to realize that using different metals to 
touch the frog’s leg was crucial to producing electricity, 
and in fact the leg could be replaced with cardboard 
soaked in brine:  no sign of life!   

He built a pile of such metal pairs—the first such 
battery—with dubious medical applications, as 

diagrammed here. 

http://www.guardian.co.uk/education/2004/oct/07/research.highereducation1
http://www.guardian.co.uk/education/2004/oct/07/research.highereducation1
http://www.executedtoday.com/2009/01/18/
http://commons.wikimedia.org/wiki/File:Voltaic_pile.png
http://commons.wikimedia.org/wiki/File:Voltazuil.jpg
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A Modern Battery: Lithium Ion 

 
Lithium ions Li+ are very tiny: remember H, He, Li, 
…they are He atoms with an extra nuclear charge. 
They can fit between atomic layers in graphite, to 
which they bond, but bond more strongly in 
LiCoO2.  Charging is by attracting them from the 
LiCoO2  into the graphite by pumping in electrons. 

 

 

 

Batteries, Circuits, Currents 
The two terminals of a battery, called electrodes, are immersed in an electrolyte.  Positive ions are 
formed at one electrode by atoms depositing electrons.   

For suitably chosen materials, energy is generated by these electrons flowing round an outside wire to 
take part in a chemical reaction (or just rejoin the ions) at the other electrode. 

The “outside wire” is the circuit.  Flow is measured in coulombs per sec, called Amperes. 

Ohm’s Law 
Ohm found experimentally in 1825 that for a given piece of wire, the current, labeled I, was directly 
proportional to the applied voltage (from number of battery cells) V, and wrote it as I =V/R, where V is 
in volts, I in amps.  

R is called the resistance of the wire, and is measured in ohms: one volt sends one amp through one 
ohm. 

These are the standard symbols for a battery and a resistance: 
remember the standard “current” is really electrons flowing the 
other way! 

 

 

 

V
 

I
 

R
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Electric and Water Currents Compared 
It’s sometimes useful to think of electric current down a wire as resembling water flowing down a pipe. 

Pressure difference between two ends of a water pipe corresponds to voltage difference between the 
ends of a wire. 

Flow rate is determined by pressure gradient: a water pipe twice as long drops twice the pressure during 
flow, in electrical terms, a wire twice as long has twice the resistance. 

Resistance and Cross-Section Area 
Suppose we take two identical wires, having the same area of cross section A, and twist them together 
to make one wire.   

When this is done, it’s found (not surprising) that the combination delivers twice the current of a single 
wire for the same voltage. 

But effectively we’ve doubled the cross-section area: so R is proportional to 1/A. 

(In fact, this turns out not to be true for real fluid, like water,  in a pipe, where doubling the cross-section area for 
the same shape more than doubles the flow rate—but it’s accurate for electric current flow.)  

Resistance and Resistivity 
To summarize: for a given material (say, copper) the resistance of a piece of uniform wire is proportional 
to its length     and inversely proportional to its cross-sectional area .A  

This is written: 

 ,R
A
ρ

=


 

where ρ  is the resistivity.   For copper, 81.68 10 m.ρ −= × Ω⋅  

Electric Power 
Remember voltage is a measure of potential energy of electric charge, and if one coulomb drops 
through a potential difference of one volt it loses one joule of potential energy. 

So a current of I amps flowing through a wire with V volts potential difference between the ends is losing 
IV joules per sec. 
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This energy appears as heat in the wire: the electric field accelerates the electrons, which then bump 
into impurities, vibrations, and defects in the wire, and are slowed down to begin accelerating again, like 
a sloping pinball machine.   

Power and Energy Usage 
Using Ohm’s law, we can write the power use of a resistive heater (or equivalent device, such as a bulb) 
in different ways: 

 2 2 / .P IV I R V R= = =  

The unit is watts, meaning joules per second. 

Electric meters measure total energy usage: adding up how much power is drawn for how long, the 
standard unit is the kilowatt hour: 

1 kWh = 1,000x3,600J = 3.6MJ. 

Energy Storage 
A more recent energy unit is the watt.hour, used in energy storage capability: a tesla battery is currently 
(2024) capable of storing around 270 w.h/kg, so a four-kilogram battery is needed to store 1 kWh. Tesla 
is now building batteries to store wind power, single units store 3.9 MWh, weigh forty tons, cost $1.4M. 
Efficiency is about 93%. 

For comparison, in Bath County, Virginia, an energy storage facility simply pumps water into a high 
reservoir, then releases it to drive turbines as it returns to a lower reservoir. When running, it generates 
3000 MW and can run for eight hours. The overall efficiency is 79%, cost about $1.6B in 1985. 

11  Microscopic Theory of Electric Current 

Ohm’s Law and Drude Theory 
Ohm’s Law, written down in 1825, relates the current I through a resistance R  to the applied voltage 

,V  

 / .I V R=  

He wrote this after extensive experimentation, finding it to be true for many metal resistances over wide 
temperature ranges (although R  itself was usually temperature dependent).  

Naturally, a simple law of such wide validity was a tempting target for theoretical speculation.  Yet the 
first serious attempt to explain it with a model came seventy-five year later! Why did it take so long? 

In fact, over this long period, no one had any idea what the “electric fluid” constituting the current 
looked like on a microscopic scale. In Ohm’s Austria, for example, like other German speaking states, 
almost no one believed in the existence of atoms—many imagined solids to be continuous at all scales. 
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One exception was Boltzmann (in the 1890’s) who had read Maxwell’s work on the kinetic theory of 
gases, and extended it, but had difficulty convincing his colleagues, and was told that on publishing he 
would not be allowed to mention “atoms”. This negative reception probably contributed to his suicide.  

The necessary conceptual breakthrough in understanding matter came seventy years later, in England, 
when J. J. Thomson (in 1897) discovered the electron. He was analyzing the rays in a cathode ray tube, 
here is his own diagram: 

 

The “tube” is the overall glass enclosure, with a good vacuum inside. The cathode is marked C on the far 
left.  In the experiment, the cathode is raised to a high negative voltage, the metal rings A and B (see 
figure) are positive. At high enough voltage difference, rays were seen to emanate from C, some passed 
through slits in A and B, and struck the right-hand end of the apparatus, where the glass glowed. The 
effect is much enhanced by coating the glass at that end with a phosphor which shines brightly when 
struck by the rays.  

Next, (see figure), Thomson charged plates B and C oppositely so the rays passed through a sideways 
electric field. The rays were deflected!  They must be charged particles. As we’ll soon discuss,  measuring 
the deflection for given electric field strength, and also measuring deflection by a  magnetic field, a 
simple calculation yielded the ratio charge/mass. Assuming the charge equaled that of the hydrogen ion 
in magnitude (as was soon established), their mass was 2,000 times smaller than the lightest atom.  

These must be the electric fluid!  And, they must have been inside atoms in the cathode. Thomson 
repeated the experiment with different materials making up the cathode. He always found the same 
particles emitted. Evidently these “electrons” were present in all atoms. 

Thomson then suggested the plum pudding model of the atom: a sphere of positive charge with 
electrons embedded like raisins in a pudding. Electrons could be knocked out, leaving a positively 
charged ion—the electron had the right charge value for this to work.  

A crystalline material like copper was known to have a regular array of atoms, and it was known that 
some solids, like salt, NaCl, form by the atoms becoming ionized and electrostatic attraction binds them 
into a cubic grid, where the nearest neighbors of an ion all have the opposite sign charge.  In the 
pudding picture, this could be understood by saying an electron leaves each Na and becomes part of a 
neighboring Cl.  
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But Cu must be a little different from NaCl.  For one thing, it conducts electricity. This suggests that as 
the atoms bind to form the solid, some fraction of the electrons remain unattached, free to move 
through the crystal—and these become a current when an electric field is applied.   

In 1894, Paul Drude became a top professor at the University of Leipzig, having gained a Ph. D. studying 
the diffraction of light by crystals, most naturally understood in terms of scattering from a regular array 
of atoms or ions. This was also the time when Maxwell’s theories were becoming more widely accepted 
in Germany, both his electromagnetic equations and his kinetic theory of gases.  

So by the late 1890’s for the first time concepts were available to formulate a semi-plausible theory of 
electrical conduction: Maxwell’s theory of gases (extended by Boltzmann) could be applied to the “gas” 
of electrons, including Maxwell’s predicted temperature-dependent velocity distribution. Of course, 
Maxwell’s theory was for gas molecules in an otherwise empty box. Hopefully the velocity distribution 
would still more or less work for the electrons in a “box” already containing the rows of ions, even 
though the electrons must keep colliding with the ions?  Also, the electrons repelled each other, but, at 
least on average, this was compensated by the background attraction from the ions. 

Anyway, despite these obvious objections, Drude hypothesized that, statistically, the electron gas had 
the symmetric Maxwell velocity distribution when in zero external electric field, although each individual 
electron had a probability /dt τ of scattering in time ,dt and would scatter to some other random 

velocity in the Maxwell distribution, with no memory of its velocity just 
before scattering.  

Now switch on an electric field E


at 0.t =  Each electron will accelerate 

to gain velocity /v eEt m=




(added to its original Maxwell distribution 
velocity) until it collides with an ion, at which point the process will 
repeat.  

Suppose at some later time t we take a freeze frame shot of the 
electrons: with the given scattering rate, the average time interval since 

the last scattering is ,τ so the average electron velocity (called the drift velocity) is 

 d / .v eE mτ=




 

(Remember the pre-collision velocities average to zero.) 

Taking the density of electrons to be ,n the electric current density 

 
2

d .nej nev E
m
τ

= =






 

Defining the conductivity  

https://upload.wikimedia.org/wikipedia/commons/4/4d/Electrona_in_crystallo_fluentia.svg
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2

,ne
m
τσ =  

we have Ohm’s law in the form 

 ,j Eσ=




 

relating the current density to the electric field strength.  

As we discussed in the last lecture, to recover the traditional form /I V R= for current down a wire, 
take the wire to have cross-section area A  and length , so the total current ,I jA=  assuming it’s 

uniform across the area, which it is, and the voltage drop down the piece of wire V E=   so  

 / / ,j I A Vσ= =   

and 

 / / .R V I Aσ= =   

Standard notation is to define the resistivity 

 
1 ,ρ
σ

=  

so the resistance R  of a length  of wire having cross-section A  is 

 .R
A
ρ

=


 

Checking Drude’s Model Against Experiment 
First, it does predict Ohm’s law.  But to get some picture of how it relates to reality, it would be useful to 
find, for example, the scattering time .τ  

By 1900, the charge e and mass m of the electron were known, as was the electron density n , at least 
approximately, so the drift velocity could be measured as follows:  

Take a piece of copper wire, say 1mmx1mm cross section, 1m long carrying 5 
amps. 

This is 1cc of Cu, about 10 gms, about 1023 conduction electrons (assuming one 
per atom), about 15,000 Coulombs of electron charge.  

Therefore, at 5 amps (C/sec) it takes 3000 secs for an electron to drift 1m. 
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Bottom line: the drift velocity is of order 0.0003  m/sec.   

This wire has resistance / 0.02R Aρ= ≈ Ω  so from Ohm’s law  0.1V/m.E ≈                     
This field will accelerate the electrons, ma = eE, approximate acceleration = 2x1010 m/s 2  This reaches 
the drift velocity in about 0.5x10 -14  seconds, that must be the time .τ  
 
So how far does the electron move on average between collisions? (This is the mean free path, often 
labeled . ) 
 
Drude assumed the electrons had a Maxwell velocity distribution, which would give an average velocity 
v at temperature :T  
 2 31

B2 2 ,mv k T=  

with Bk Boltzmann’s constant. This gives an average electron speed of order 105 m/sec, so the distance 

between collisions, the mean free path, is of order 0.5x10-9 m, close to the interionic distance, a 
reasonable sounding result.  

Other insights from Drude’s theory included the behavior of a current when a magnetic field was added 
(the Hall effect), and the previously mysterious relationship between electrical conductivity and heat 
conductivity (in metals heat is mainly conducted by electrons). 

What About Quantum Mechanics?  
However, it turned out that although the picture of an electron gas with random scatterers was 
essentially correct, the advent of quantum mechanics changed everything.  An electron in a regular 
crystal is wavelike, and passes through a perfect crystal at zero temperature without scattering, like light 
through glass. It is scattered by impurities, and by thermal vibrations.  This explains why resistivity of 
metals increases approximately linearly with temperature over a wide range. The formula is: 

 ( )T 0 01 .T Tρ ρ α= + −    

 An old incandescent (not LED) bulb has a tungsten wire at about 3300K, and α = 0.0045, from which the 
resistivity is not far off being proportional to absolute temperature. 

Experimentally (and theoretically) the electron mean free path is at least an order of magnitude more 
than Drude’s model suggests, yet the mean free time, which we found from the drift velocity, must still 
be the same. Going back to a particle viewpoint, this means the electrons are going at least an order of 
magnitude faster than Maxwell’s velocity distribution predicts. Turns out they are not at all like a 
classical gas. First, the wavelike nature means that, as in the Bohr atom, only certain wavelength are 
allowed (so a whole number of wave oscillations fit in the box), and, second, there’s the exclusion 
principle: no two electrons can be in the same quantum state. This means the free electrons are forced 
up into high velocity states—this is the essential point. Unfortunately, a fuller explanation would take 
several lectures— meaning a proper introduction to quantum mechanics. 
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AC and DC 
We’ll discuss AC in much more detail later. 

Batteries provide direct current, DC: it always flows in the same direction. 

Almost all electric generators produce a voltage of sine wave form: 

 0 0sin 2 sin .V V ft V tπ ω= =  

In a resistance R this drives an alternating current, AC,  

 0
0

sin sinV tI I t
R
ω ω= =  

and power 
 ( )2 2 2 2 2

0 0sin / sin .P VI I R I R t V R tω ω= = = =  

So the power is rapidly oscillating, what matters in practice is almost always the average power. 

The average value 2 1
2sin tω =  (from 2 2sin cos 1.t tω ω+ = ) 

We define the root mean square voltage rmsV  by 

 2
rms 0 / 2,V V V= =  

so the average power 

 2
rms / .P V R=  

 The standard 120 V AC power is rms 120 ,V V= so the maximum voltage 0 120 2 170V = ≈ V. 

Semiconductors 
 
In the Bohr model of the hydrogen atom, an electron circles around a proton. 

An n-type semiconductor is a dielectric insulator which has been doped—atoms having one more 
electron than the insulator atoms are scattered into it. 

The extra electron circles the dopant atom, but is loosely bound because the dielectric shields the 
electric field—it looks like a big Bohr atom.  As the temperature is raised, these electrons break away 
from their atoms, and become available to conduct electricity. 

Bottom Line:  Conductivity increases with temperature. 
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Superconductors 
A superconductor has exactly zero resistivity. 

In 1911, mercury was discovered to superconduct (R = 0) when cooled below 4K. 

Superconducting magnets are widely used, in MRI machines, etc. 

There are now materials superconducting above the boiling point of liquid nitrogen, making long 
distance transmission lines feasible.   
Superconductivity is a quantum phenomenon. 

 

Why Bother with AC? (we’ll discuss this more 
later) 
Because, as we’ll see, it’s very easy to transform 
from high voltage to low voltage using 
transformers.  

 

This means for long distance transmission we can 
use very high voltage, hence small currents and 

thinner wires, but transform to less dangerous low voltages for local use.  

 

Long distance lines use aluminum wires. Copper is a better conductor, but is much heavier and more 
expensive. Steel is sometimes added for strength.  

 
 

 
Sometimes DC is used for a single long line. 
 

• This 3 gigawatt DC line (enough for 2 to 3 million households) 
transmits hydropower from the Columbia river to Los Angeles. 

• At these distances, it gets tricky synchronizing the phase of AC 
power. 
 

http://upload.wikimedia.org/wikipedia/en/9/9f/Delta_pylon_near_Madrid.JPG
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12  DC Circuits I 

Introduction: Electromotive Force and Terminal Voltage 
In this lecture, we’ll analyze current flow in a network of resistances and include the possibility of 
batteries in some branches. We only address steady current flow, so do not include capacitances or 
inductances—these will be dealt with a little later.  

Beginning with the simplest case of a single battery, the potential difference that drives current 
originates in the chemical reactions inside the battery, at the surface of contact of the electrolyte and 
the terminals, called the anode and cathode. The two chemical reactions (releasing an electron at the 
anode to go around the circuit to combine chemically at the cathode) add to give a driving potential 
called the electromotive force, denoted by . This drives the current around the circuit but also through 
the battery itself, which has its own resistance, usually denoted by .r  Thus the potential delivered 
outside, called the terminal voltage and denoted by ,V is given by  

 .V Ir= −  

Often r is small enough for this correction to be ignored.  

Remark: don’t worry too much about the names anode and cathode. Check the Wikipedia article. For one thing, 
the names are switched on recharging. Also, in vacuum tubes the heated element is always called the cathode. Just 
concentrate on how the electrons/ions are moving.  

Resistances in Series and Parallel 

https://en.wikipedia.org/wiki/Electric_battery
https://en.wikipedia.org/wiki/Anode
http://upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Pacific_intertie_geographic_map.png/220px-Pacific_intertie_geographic_map.png


57 
 

Applying Ohm’s Law ,V IR= the same current passes 
through all three resistances, so there are successive voltage 
drops 1 2 3, ,IR IR IR for a total voltage drop  

 1 2 3V IR IR IR IR= + + =  

where 1 2 3.R R R R= + +  Resistances in series just add. 

 

Parallel resistances all have the same voltage drop, the total 
resistance (see figure) is given by  

 
1 2 3

1 1 1 1 .
R R R R
= + +  

This is more obvious thinking in terms of the conductance (the 
inverse of the resistance): conductances just add, like parallel 
pipes conveying water. 

More General Networks: Kirchhoff’s Laws 
We first consider a network of connected elements, as in this 
diagram, the individual elements can be resistances or batteries. 
(We’ll add capacitances and inductances later.)  

 

1R  2R  

4R  3R  

5R  1I  I  

1I I−
 

1 2I I−
 

2I  

  

2R  1R  3R  

1 2 3R R R R= + +  

1R  

 2R  

3R  

1 2 3
1 2 3

V V VI I I I
R R R

VI
R

= + + = + +

=

 

1I  

I  
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To analyze such a network, we label each element with its resistance ,iR the current iI and the emf of 

any battery in that element .i  Then we use Kirchhoff’s laws. 

Kirchhoff Law #1: Junction Rule.  At any connection point between elements, the total ingoing current 
must be zero. 

In other words, charge cannot be piling up—the junction has no capacitance.  

We have already applied this rule in the above diagram to reduce the number of unknown currents from 
five to two.  The currents must be labeled with a value jI  and an arrow indicating direction.  

Kirchhoff Law #2: Loop Rule. The potential drop across an element is .j jI R  (plus possible battery term). 

The total potential change on going round a closed loop back to the same point must be zero. The 
electric field is conservative, so 

 
loop

0.j jI R =∑  

If you take a walk on a hillside and finish at the same spot you began from, your total change in 
gravitational potential is zero. This is the same thing.  

General Strategy for Solving Resistance Networks: 

First, notice if there are resistances in series that can just be added, or in parallel that can be combined. 
(There may not be any.) 

Second, label the current through each resistance, taking full advantage of the junction rule to minimize 
the number of unknowns. 

Third, apply the loop rule to generate a number of equations equal to the number of unknown currents.  

Solve these simultaneous linear equations to find the currents. You can then use Ohm’s law to find the 
voltage drop for any resistance.  

An Example:  Compute the resistance acR  of this 

network from a  to c given that all lines are one 
ohm resistors except ,dc which has resistance .r  

In drawing the diagram, we’ve already applied the 
Junction Law at ,b d to avoid introducing yet more 
unknown currents.  This should always be done.  

The total current flowing from a to c is a  

d  

b  

c  

3I  

3 4I I−
 

2I  

2 4I I+
 

1I  

4I  
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1 2 3.I I I I= + +  

 

Call the resistance of the network from a to c  ,acR  then 1,ac acV IR I= = the last being the voltage drop 

across the one ohm resistor .ac  

So 1 / .acR I I=  

Now we add to zero the voltage changes on going around loops, using V IR= for each element, with 
1R = except for dc where .R r=  

We have four unknown currents, but already have one equation above, given the external current ,I  so 
we need three loop equations. Here they are: 

Loop 2 3 4: .abd I I I= +    Loop 1 2 4: 2 .abc I I I= +   Loop ( )1 3 4: 1 .acd I r I rI= + −  

From the first two, ( )1 3 4 3 42 3 1 ,I I I r I rI= + = + −  so ( ) ( )3 41 3 .r I r I− = +  

It is now straightforward to express all currents as multiples of 4I  (do it!) to find  

 
( )

1

1 2 3

3 5 .
8 1ac

I rR
I I I r

+
= =

+ + +
 

Exercise: Consider the three special cases 0,1, .r = ∞  See if you can find an easy way to find acR  for 

each of these three cases, without going through all the work above.  

13  DC Circuits II 

Wheatstone Bridge 
This is a circuit to measure an unknown resistance.  

When the battery is connected, and the ammeter on the central vertical line registers zero current, the 
voltage drop ab must equal the voltage drop .ac  Of course, the total voltage drop abd acd=  (it’s a 
loop),  from which, applying Ohm’s law V IR=  to each resistance 
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3 31 1

1 2 3 4 2 4

, so .R RR R
R R R R R R

= =
+ +

 

 The resistances 3 4,R R are fixed 

and known. The calibrated 1R  is 

varied until the central current 
reads zero, and the formula above 
then gives the unknown resistance 

2.R  

 

 

 

 

 

 

 

Series and Parallel EMFs 

For batteries in series, the EMFs just add, as do the battery internal 
resistances. If equally matched batteries have opposite polarity in a 
completed circuit, nothing happens.  If they’re not equal, the 
stronger will drive the weaker backwards—in other words, charge 
it, reversing the internal chemical reactions.  For a lithium ion 
battery this is especially easy to understand, the ions simply move 
from the LiCoO2 to the graphite.  In a hybrid car, this is happening 
almost all the time in stop-go driving, most braking just reverses 
the current, greatly improving gas mileage. 

Identical batteries in parallel deliver the same EMF as a single 
battery, but with lower effective internal resistance, and, of 
course, longer life.  
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RC Circuits 
Suppose we take a charged capacitor, charges 0Q±  on the two plates, then connect the plates using a 

wire having resistance .R  The capacitor will discharge through the resistance, but how quickly? (Note 
that we are assuming negligible inductance in this circuit.) 

 

  

Writing the charge on the capacitor as a function of time, ( ) ,Q t the voltage across the capacitor 

( ) ( ) /V t Q t C= so from Ohm’s law  

 
( ) ( ) ( ) ,

Q t dQ t
I t R R

C dt
= = −  

that is, 

 ,dQ Q
dt RC

= −  

 with solution /
0 ,t RCQ Q e−= and current /0 .t RCQdQI e

dt RC
−= =  

Charging a Capacitor 

C  

R  

0Q  0Q−
 

Closing switch discharges capacitor 

I  
0Q

RC
 

0  RC
 

t  

Current while discharging 
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The capacitor is initially uncharged, when the switch is closed 

 ( )/ / / ,IR Q C dQ dt R Q C= + = +  

so  

 ,dQ Q
dt RC R

= − +


 

and 

 ( )/1 .t RCQ C e−= −  

Flashing Light 
One application of an RC circuit is the kind of flashing light used 
at construction sites. 

A gas filled bulb (typically neon) having two electrodes inside is 
connected between the two plates of the capacitor. On closing 
the switch, a large initial current flows into the capacitor, 
building charge—and therefore field—opposing the current. At 
low voltages, the neon gas is an insulator, but when the potential 
difference reaches a certain voltage, typically around 80V, the 
gas ionizes and a large current flows through the bulb with a 
flash of light, thereby discharging the capacitor to begin the cycle 
again.    

 

C  

R  

  

/V Q C=
   

0  RC
 

t  

Charging a Capacitor 

C  

R  

  

Bulb filled with neon gas 
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14  Magnetism I 

Early Observations and First Use 
No doubt people were aware of magnetic and electrical phenomena much earlier, but the first recorded 
magnetic observations are from about 500 BC, the ancient Greeks. Rocks were observed to attract each 
other, and stick to iron nails in boots, in a place called Magnesia.  

The first important use of magnetism was that of the compass in navigation. This was in approximately 
!000 AD in Northern Europe, and about the same time in China. (Apparently the Chinese had magnetic 
pointing devices earlier, but these were not used for navigation, only for finding most harmonious 
direction arrangements for furniture, etc., feng shui). The approximately simultaneous arrival of the 
navigational compass in Northern Europe and China suggests a common source, perhaps the Mongols, 
this is much discussed on the web, but the lack of documentation from this period renders it 
inconclusive, at least as far as I can see. 

The first attempt to analyze magnetism from a recognizably modern point of view was the publication of 
De Magnete in 1600 by William Gilbert of St John’s College, Cambridge (my college).  He constructed a 
miniature earth (terrella) of lodestone and moved a small compass around its surface to demonstrate 
that the Earth itself was in fact a magnet.  His work impressed Galileo, in fact their approaches were very 
similar, both had little patience for “authorities” who didn’t do experiments.  

For a fuller account of the development of these ideas, check out my notes here.  

Magnets 101 
Everyone is familiar with bar magnets, horseshoe magnets, and revealing the magnetic field by 
sprinkling iron filings, which line up with the field. There are always two “poles”, labeled N and S from 
compass notation (N for “north seeking”).  Like poles repel, unlikes attract.  

http://galileoandeinstein.phys.virginia.edu/more_stuff/E&M_Hist.html
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The iron filings make clear that the field pattern, especially some distance away, resembles the electric 
field from equal positive and negative charges close to each other, a dipole. But it’s really quite 
different! You can have an isolated positive charge, you can’t have an isolated magnetic north pole. If 
you break the bar in two, each piece will have its own N and S pole area.   

The horseshoe magnet is a convenient configuration to concentrate the strong field into a small volume. 

Powerful compact magnets are essential for building electric cars, and it turns out iron is not magnetic 
enough—the solution is to alloy with rare earths, in particular neodymium and dysprosium. Currently 
(2024) these are almost all mined in China, but can be found elsewhere, for example Ukraine and 
Greenland.   

The Earth’s Magnetic Field 
Although the Earth’s core is mainly iron, it is too 
hot to be magnetized (thermal vibrations knock 
the magnetic atoms out of line with each other).  

The Earth’s magnetic field is actually generated 
by electric currents in the outer core, driven by a 
combination of convection fluid currents and 
Corioli’s forces. It is not a simple process.  

The general shape is as perceived by Gilbert, a 
dipole (with the S end under the North pole, 
approximately).  It is not in line with the Earth’s 

axis of rotation, and in fact it has been proved that the fluid dynamics generating the dipole field would 
not work if it was in line.  

Seabed Stripes 
n the cold war (1950’s) to 
better detect submarines 

https://upload.wikimedia.org/wikipedia/commons/thumb/c/c2/VFPt_horseshoe-magnet.svg/300px-VFPt_horseshoe-magnet.svg.png
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magnetically, a detailed map of seabed magnetization in the Atlantic was made. It revealed a pattern of 
stripes of reversed magnetization, symmetric about the midatlantic ridge.  This cast light on continental 
drift: hot materials well up at the ridge, get magnetized as they cool in the Earth’s field, spread out both 
ways.  And, it turns out, the Earth’s magnetic field sometimes reverses, about every 300,000 years. Of 
course, any theory that explains the Earth’s magnetization will have to include this.  

Oersted’s Great Discovery 
In 1820, the Danish physicist Oersted was the first to show electricity and 
magnetism were connected, by detecting the magnetic field of an electric 
current: remarkably, the field circled around, direction given by the right-hand 
rule (see figure). Here’s a demo.  

Notice how very different these field lines are from any possible static electric 
field. If you have a north pole, you can take it around a circle and end up at higher energy—evidently, 
unlike the static electric field,  this field doesn’t come from a simple potential.  

 

Currents in Loops and Solenoids 
Bending the wire into a circle, we can 
figure out the general shape of the field. 
Note that a solenoid (a series of 
connected loops) has a field resembling a 
bar magnet—but now we can see inside, 
and there are no poles. The magnetic 
field lines don’t stop anywhere. No-one 
has ever detected a magnetic monopole, 

despite many expensive attempts, and at least 
one false alarm.  

Loop by Geek3 - Own work, CC BY-SA 3.0, 

https://commons.wikimedia.org/w/index.php?curid=11621875) 

Solenoid by Maciej J. Mrowinski - Own work, CC BY-SA 4.0, 

https://commons.wikimedia.org/w/index.php?curid=125786739 

Force on a Horseshoe Magnet from 
Current in Wire and Vice Versa 
 

In the diagram, the circle is a line of magnetic 
force from current going downwards in a wire 

S N 

x  

y  
current in z−  
direction, into 
screen 

https://en.wikipedia.org/wiki/File:17._%D0%95%D1%81%D1%82%D0%B5%D1%80%D0%B4%D0%BE%D0%B2_%D0%B5%D0%BA%D1%81%D0%BF%D0%B5%D1%80%D0%B8%D0%BC%D0%B5%D0%BD%D1%82.ogv#filelinks
https://commons.wikimedia.org/w/index.php?curid=11621875
https://commons.wikimedia.org/w/index.php?curid=125786739
https://en.wikipedia.org/wiki/Right-hand_rule#/media/File:Manoderecha.svg
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perpendicular to the picture, passing through the yellow dot half way between the poles.  Note the axes: 
this is a 3D problem. 

The crucial point is that the magnetic force on the S pole is equal to and parallel with that on the N 
pole—the forces add!  

So the horseshoe feels an upwards force, meaning in the y -direction in the diagram. 

From Newton’s Third Law, then, the wire must experience a downward ( y− ) force from the 

horseshoe’s magnetic field.  That field, of course, is going from N to S, so is in the positive x -direction at 
the wire.  Remembering the current is downwards ( z− ) into the diagram, the force is evidently in the 
direction perpendicular both to the wire and the magnetic field.  

Definition of Magnetic Field 

The magnetic field strength B


is defined by this force: for a uniform field, straight wire increment d


 ,  

 .F I d B= ×


 

  

This result is well-established experimentally for any angle between the wire and the field, and in 
particular for a current running parallel to the field there is zero force.  

This equation fixes the unit of magnetic field: for F


in Newtons, I in amps, B


is in Teslas.  

Force on Any Current in a Constant Field 
It is found experimentally that the total magnetic force on any wire carrying current I in a constant 

magnetic field B


is the sum of terms .dF I d B= ×


 

  

For a constant magnetic field, for any shape wire going from 1r


 to 2 ,r  

 ( ) ( )2

1
2 1 ,

r

r
F I d B I r r B= × = − ×∫






  

 

  

The little d


 vectors are head to tail, they all add to give the straight line from 1r


 to 2.r  

This means that for a closed loop of current in a constant field there is no net force—but there is in 
general a couple acting, as we’ll soon discuss.    

15  Magnetism II 

Force on an Electric Charge Moving in a Magnetic Field  
We’ve already discussed the experimentally well-established force on a current element in a magnetic 

field, recall that for an increment d


  of current-carrying wire it was .F I d B= ×


 

  
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 If the linear charge density in the wire is λ coulombs/meter, and the charge is moving at v along the 

wire, then the force F


on the  charge q  in the increment d


 of wire,  ,q dλ=   is (using I vλ= ) 

 .F Id B d v B qv Bλ= × = × = ×


   

 

   

(Of course, d


 and v are parallel vectors.) 

This, then, is the force on a charge q moving at velocity v in a magnetic field .B


 

The force is perpendicular to the direction of motion at all times, so can do no work:  

 ( ) 0.F ds F vdt q v B vdt⋅ = ⋅ = × ⋅ =
  

   

 

Exercise:  Suppose you have two parallel long wires carrying identical currents. They will attract each 
other, and accelerate towards each other. If the magnetic force can’t do any work, how does this 
happen?   

Hint: take the simplest possible picture—think of electrons going down a super pure metal wire, so the 
only constraint is that they stay in the wire by bouncing off the sides as they move down. How will 
switching on a magnetic field alter this picture? 

Motion in a Uniform Magnetic Field 
First, if the particle is moving parallel to the magnetic field 
it will feel no force and so continue at constant velocity.  

Second, if it initially moving perpendicular to the uniform 
magnetic field, it will feel a sideways force proportional to 
its speed and will move in a circle, say radius ,r  force 

qv B×




pointing towards the center: 

2

.mvqvB
r

=  

  It follows immediately that the time for one circle is  

2 / 2 /T r v m qBπ π= =  

  independent of the size of the circle!  

This independence makes the cyclotron accelerator possible. 

Proton in a Cyclotron 

F


 

v  

B


 field into screen 
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The two “D”s are hollow D-shaped metal boxes, open along the straight part.  

The circling protons go back and forth.  

The oscillator alternates the relative voltages of the D’s, so as a proton goes from one to the other it is 
attracted and accelerates, going into a larger, faster circle—but with the same period—each time. 

If the proton reaches relativistic speeds, its mass increases and the circling time changes, recall 
2 / 2 /T r v m qBπ π= = . 

Still, in 1939 a 60-inch cyclotron at Berkeley accelerated deuterons to 16 Mev, and this was used in 
secret in the Manhattan Project to bombard Uranium and produce the Plutonium used in the “Fat Man” 
bomb, not declassified until 1948.  

The relativistic mass circling time can be handled by having an oscillator with gradually decreasing 
frequency to match the mass increase. This is a synchrocyclotron: the problem is that now the particles 
must move in a tight group, whereas in the cyclotron particles could be fed in continuously.  

Charged Particle in a Magnetic Field  

If the initial velocity is not perpendicular to the field, the motion in 
constant field will be circular plus a constant velocity parallel to the 
field—a helix.   

 

If the field is becoming stronger in the direction of motion, the helix 
gets tighter, and finally reverses. This is a magnetic mirror, used to 
confine plasmas in prototype fusion reactors.  The slope of the field 
lines gives a “backward” component to the magnetic force. 

 

Large-Scale Magnetic Confinement  

 The van Allen radiation belts are filled with charged 
particles moving between two magnetic mirrors created 
by the Earth’s magnetic field. The outer belt is mostly 
electrons, the inner one mostly protons. 

http://pluto.space.swri.edu/image/glossary/drift_bounce3.gif
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Physics 2415 Lecture 16: Magnetism III 
Michael Fowler UVa 

Torque on a Current Loop 
This is the driving force for most electric motors, and, acting in reverse, the current generator for 
dynamos. It is also the basis for almost all pre-digital measuring devices: voltmeters, ammeters, etc.  

We begin with an a b×  rectangular loop, horizontal, in a uniform magnetic field with field lines parallel 
to the end sides of the loop.  

The forces on the other sides are vertical as 

shown, with magnitude ,I B IaB× =
 

 and 

torque about the axis: 
 

/ 2 / 2IaBb IaBb IabB IABτ = + = =
where A ab= is the area of the loop.  

 

Exercise:  This formula (in terms of the loop area) works for 
any flat loop, not just rectangular.  Try proving it!  

Current Loop at an Angle  
Note:  for a coil with N turns, just multiply the single-loop 
result by N.   

/ 2b
 

end view 

a
 

b
 

current 
out 

current 
in 

end view 

/ 2b  

θ  

IAµ =




 

http://upload.wikimedia.org/wikipedia/commons/0/02/Van_Allen_radiation_belt.svg
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The current loop has a magnetic field resembling that of a short bar magnet, we define the direction of 

the loop area vector A


 (perpendicular to the wire loop) as that of the semi equivalent bar magnet, the 

magnitude of the vector A


being the area. 

Generalizing the result of the previous section to the case where the area vector A


is no longer parallel 
to the magnetic field, the torque becomes (see figure) 

 sin ,IABτ θ=


 

meaning the loop has a dipole moment  

 IAµ =




 

and as usual 

 .Bτ µ= ×


 

 

 Note that the formula IAµ =




 is good for any flat loop. 

Current Loop Potential Energy as Function of Angle to Field 
The work done in turning the loop through incremental angle dθ  is ,dτ θ  so, taking the zero of 

potential energy to be at / 2,θ π= the potential energy at arbitrary θ  is the work needed to get there,  

 sin cos .U d IAB d B Bτ θ θ θ µ θ µ= = = − = − ⋅∫ ∫




  

Basic Electric Motor: the Commutator 
It’s just the loop in a magnetic field again, but with one 
crucial addition: the commutator. 

As the loop rotates (envision it as a short bar magnet 
attracted by the poles of the big magnet) the commutator 
switches the current direction (notice it’s made of two half-
circles) and therefore switches the loop’s poles, so that the 
loop always feels a torque in the same direction (or zero), 
and continues to rotate.  

 

 

As we’ve discussed earlier, Faraday pictured the magnetic 
field lines as elastic, naturally trying to shorten themselves 

http://www.physchem.co.za/OB12-ele/machines.htm
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(and also repelling each other sideways):  this helps explain the force. 

Exercise: Sketch the magnetic fields from (1) the permanent magnet and (2) the current in the wire 
independently, then see how adding them gives a picture like this.  

To see a really simple motor, click here. 

Galvanometer 
The galvanometer measures the torque on a small coil in a magnetic field by 
balancing it against a curly spring (see figure). The coil is wound around an 
iron core to concentrate the field, and also to keep the coil in the same 
strength field when it turns within the angular limits of the instrument.  

Trivia: Ampère named the galvanometer in honor of Galvani, the first person to 
detect a current, using frogs’ legs (they twitched), years before the magnetic field 
from a current was detected with a compass.  

 Predigital voltmeters and ammeters are essentially all galvanometers. In 
the ammeter the current to be measured goes directly through the instrument. In contrast, the 
voltmeter is wired between two points to detect their potential difference by letting a very small current 
through the meter, so as not to impact the system significantly.  

Thomson’s Measurement of e/m for an Electron 
We discussed Thomson’s experiment in lecture 11: electrons emitted by a 
heated wire cathode are accelerated by a high voltage in a vacuum tube 
and strike a phosphor-coated screen, leaving a shadow of any object (the 
anode here) in the way.   

 

Thomson narrowed the cathode rays to a pencil, which then passed 
between parallel charged plates (like a capacitor) P1, P2 (see figure) 
creating an area of uniform vertical electric field .E  At the same time,  
current-carrying vertical coils were placed on each side of the tube to 
provide a uniform horizontal magnetic field B  perpendicular to the 
ray direction, in the same region.  

On entering the space between the plates, moving at speed ,v the 

electron will be subject to a total vertical force, electric + magnetic, of .eE evB+  Adjusting plate voltage 
or coil current until the electron goes through without deviation, its speed will be given by  

 / .v E B=  

http://www.youtube.com/watch?v=VhaYLnjkf1E&feature=fvsr
http://mpec.sc.mahidol.ac.th/radok/physmath/physics/fig515.jpg
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We know the original accelerating voltage ,V and 21
2 ,eV mv=  so, having found the velocity ,v  we can 

now find / .e m  

Millikan’s Oil Drop Experiment 
To measure just the charge of an electron, it doesn’t work to balance the electric force with a magnetic 
force, both depend on the charge. It is necessary to balance the force eE with a nonelectrical force.  The 
obvious candidate is gravity, and for the force on a single electron, we need the gravitational force on a 
small object.  Millikan (at Chicago, 1908) chose the tiny oil drops emitted by a mist spray bottle, used for 
example for perfume. The cloud of mist generated takes some time to settle under gravity, because the 
weight of a (spherical) small drop is essentially balanced by the viscous friction air resistance as it falls. 
For a drop of radius ,r the air resistance at speed v  is 6 r vπ η  where η  is the air’s viscosity (known), so 

measuring v and using 34
36 r v r gπ η π ρ=  ( ρ the oil density) the radius can be found, and hence the 

weight.  

The procedure, then, is to generate a small cloud of spray, then use a microscope to find a drop falling at 
an easily measurable rate, and thus calculate its radius and hence its weight.  

(Aside: this was evidently more accurate than measuring the size of the drop by observation. Discuss.) 

Next, a vertical electric field is turned on and adjusted until the oil drop stops falling, becoming 
stationary. At this point, the weight is balanced by the electrical force qE so q can be found.  The 
experiment is repeated many times, and it is found that the measured charge is always a whole number 

times a basic unit: ,q ne= n an integer and 191.6 10e −= × coulombs. This then is the electron charge.   

More recent update: After the invention of quark theories in the seventies, millions of dollars were spent 
repeating Millikan’s work to search for free quarks (meaning not inside another particle), which would 
have charges one-third or two-thirds the electron charge.  No free quark was ever found. 

Exercise: Taking the oil density to be approximately that of water, what is the radius of a droplet in 
balance with one excess electron in a field of 1000 volts/meter?  Look up air’s viscosity to find its 
approximate rate of descent if the electric field is switched off, using the (Stokes’) viscosity drag formula 
given above.  

Hall Effect 
The Hall effect was discovered by a Johns Hopkins graduate student, Edwin Hall, in 1879. He asked 
himself whether the force felt by a current-carrying wire in a magnetic field was a force on the wire or 
on the current. Remember this was before the discovery of the electron, so the concept of the electrical 
current was pretty vague.  

https://galileo.phys.virginia.edu/classes/152.mf1i.spring02/Stokes_Law.htm
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+ + + + + + + +
 

The essence of the Hall Effect can be understood with a simple model. Suppose with zero magnetic field 
charged particles are fed into the left-hand side of a conductor and a horizontal electric field keeps them 

moving to the right. (We’re looking at an average of many particles, 
a single particle will follow a complex path with many collisions, see 
Drude.) 

Next we switch on a magnetic field perpendicular to the screen, 

pointing inwards. The particles will experience a force qv B×




and 

for negatively-charged electrons this will deviate them downwards.  
But this pattern won’t last long: negative charge will pile up along 

the bottom edge, generating a repulsive electric field which will eventually exactly compensate the 
magnetic force, this is called the Hall field, and written 

 dHE v B=  

where dv is the average, or drift, speed of the charged particles.  

The Hall voltage, or emf, is the potential difference between the 
top and bottom of the strip. For width ,w this is   

 d .H HE w v Bw= =  

Exercise: It was not known at the time of this experiment if the 
current was negative particles moving to the right or positive 
particles moving to the left. But the experiment could distinguish 
between these models. Explain why.  

Mass Spectrometer: Velocity Selection and Identification 
In the above discussion of Thomson’s experiment to measure e/m, for a stream of particles moving in 
the x -direction at speed ,v if there is an electric field of strength E in the y -direction and a magnetic 

field of strength B in the z -direction such that 0E v B+ × =
 



there will be no net force and the stream 
of particles will not be deviated. Note that this condition does not depend on the mass or the charge of 
the particles.  

This means that if we send a stream of different kinds of particles, different masses, charges, velocities, 
down a narrow tube with these sideways electric and magnetic fields, only those with speed /E B will 
get through, the others will deviate and hit the sides.  

Once we have a stream of particles all at the same velocity, we direct them into a perpendicular 

magnetic field (now no electric field) and they will circle with radial acceleration 2 / / .v r qvB m=  If we 
detect them after half a circle, the half circle path radius will be proportional to the particle mass, so we 
can read off the proportion of different particle masses in the stream: this is termed Mass Spectrometry.  
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One use of mass spectrometry is carbon dating.  Most elements have several isotopes: the nuclei of 
course have the same number of protons, but different numbers of neutrons. The isotopic ratio can 
change with time if one of the isotopes is radioactive and so decays. This is the case with the isotope 
carbon-14, continually produced from nitrogen (and cosmic radiation) in the upper atmosphere, but 
when absorbed into living tissue it decays with a half-life around 5700 years, so its fraction is good for 
dating in the range 500 – 50,000 years. 

Mass spectrometry also works for molecules, an example being drug detection in a urine sample.  

 

17 Sources of Magnetic Field I 

Magnetic Field from a Current in a Long Straight Wire 
 

From many experiments, the lines of magnetic force are circles 
around the wire, direction determined by the right-hand rule. 

The field strength is proportional to the current, and inversely 
proportional to distance from the wire.  

70
0, 4 10 Tesla.m/A.

2
IB
r

µ µ π
π

−= ≅ ×  

 

0µ  Update 

  In an earlier version of these notes, we wrote 7
0 4 10µ π −= × exactly, and that was true at the time—

but things have changed. From 2019 on, the speed of light, the electron charge and Planck’s constant 
have been given specific numerical values (effectively, this defines the units of length, etc., the unit of 
time having been defined in terms of certain frequencies of the Caesium atom) and the result is that 0µ

http://en.wikipedia.org/wiki/File:Manoderecha.svg
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changed from its previously defined value by about one part in ten billion. So for this course, and likely 
the rest of your life, you can stick with the old value—but be aware of this trivium.  

Force Between Parallel Wires 

The field from current 1I  is 0 1 ,
2

IB
r

µ
π

= circling the wire, and 

the current 2I will feel a force 2I B×
 

 per length , so the 

force per meter on wire 2 is 

0 1 2

2
I IF
d

µ
π

=  

towards wire 1 and wire 1 will feel the opposite force.   

Bottom line: Like currents attract.  

 Definitions of the Ampere and the Coulomb 
The traditional definition of the ampere, the unit of current, is 
based on the two-wire scenario above, two long equal parallel 
one amp currents one meter apart feel an attractive force 

72 10−× N/m. 

The unit of charge, the Coulomb is the charge flow per second 
in a one amp current.  

As mentioned above, the units have been 
redefined, but the change is around 

one part in ten billion so will not concern us.  

Like Currents Attracting 
This is a piece of copper pipe: lightning sent a large current through it, the parallel currents 
attracted each other and pulled the pipe with them to a very hot central volume. 

The same thing happens on sending a large current 
through a plasma, and intense heat is generated. This is 
one possible scenario for raising the temperature of 
small nuclei sufficiently to trigger fusion. Unfortunately, plasmas have 
many instabilities under these conditions, and it seems decades will still 

be needed to make this a practical power source.  

Magnetic Field Lines for Parallel Wires 

1I  2I  

Showing field from 1,I force on 2.I  

http://en.wikipedia.org/wiki/Plasma_pinch
http://en.wikipedia.org/wiki/Z-pinch
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The magnetic field at a point is the vector sum of the two fields 
circling the wires.  

Exercise: check the diagram on the left (for equal currents) by 
first sketching the two sets of circles (one for each wire) then use 
a different color for the vector sum in a few places, to see how 
this pattern emerges. What’s going on in the middle? 

Finally, sketch the field lines if the currents are opposite. Make clear what happens in the middle. 

 

Introducing Ampère’s Law 
Consider a current I in a long wire perpendicular to the screen, and the 

integral B d⋅∫






 around a circle of radius r as shown.  Taking 

0 / 2 ,B rµ π= and d rdθ= (the small red vector), the integral is just 

over θ  from zero to 2π and  

 0
0 .

2
B d rd I

r
µ θ µ
π

⋅ = =∫ ∫




 

 

 

Suppose now we take a noncircular contour for the integral. The increment 

B d⋅


 only has a contribution from the component of d


which is parallel 

to ,B


and has length ,rdθ so we get the same result for the integral.   

This is even still true if we draw the curve in three-dimensional space, 
because the added dimension (perpendicular to the screen) is perpendicular 

to B


so makes no contribution to .B d⋅


  

 

Exercise: Important!  Do the same exercise but with the wire outside the curve.  

Prove the answer is zero.  Hint: Track what happens to θ as you go around once, check .dθ∫   

Ampère’s Law 
From the two cases discussed above, we can see that for a magnetic field from many long straight wires 
in arbitrary directions,  

 0 encl ,B d Iµ⋅ =∫






 

r  

http://www.rfcafe.com/references/electrical/Electricians%20Mate%203%20-%20Navy%20Training%20Courses%20%20NAVPERS%2010548/chapter%203.htm
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where enclI counts only currents that penetrate a surface roofing the integration curve.  

This is Ampère’s law, and in fact is true for any collection of time-independent currents, well-verified 
experimentally. (Our “proof” above is only for a collection of straight-line currents. A general proof is 
not difficult, but needs a bit more calculus.) 

Field Inside a Wire 
Apply Ampère’s law to the dashed circular path of radius r  inside 
the wire as shown. From symmetry (and no monopoles), the field 
must be tangential.  

The surface “roofing” this path has area 2 ,rπ  the whole wire has 

cross-section area 2Rπ  so the current flowing through the path 

is 2 2/ ,Ir R  and Ampère’s law gives   

2 2
0

0
2

2 / ,

.
2

B d rB Ir R

I rB
R

π µ

µ
π

⋅ = =

=

∫








 

Field Inside a Solenoid 

   

Take a rectangular Ampèrian path as shown below.  Assume the external magnetic field negligible, and 
the field inside parallel to the axis (a good approximation for a 
long solenoid). For current ,I n turns/meter,  

 0

0

,

.

B d B nI

B nI

µ

µ

⋅ = =

=
∫




  

  

 

Magnetic Field of a Toroid 
A toroid here is equivalent to a solenoid with the axis turned 
into a circle so the two ends connect. This is a promising design 
for containing a hot plasma, unlike the “magnetic bottle” where 
charged particles can escape at the ends.  

Notice the current-carrying wires spiraling around the surface. 

I  

B


 

http://en.wikipedia.org/wiki/File:Solenoid-1.png
https://en.wikipedia.org/wiki/File:Torus.png


78 
 

To find the field, imagine slicing the donut to get maximal flat surface area, the wires intersect this 
surface in two concentric circles, say currents coming up on the inner circle, down on the outer circle.  

From symmetry, the lines of magnetic field must themselves be circles centered on the main axis, and 
the field must have the same strength all the way round.  

For the integral around a circle of radius ,r  

 02B d rB NIπ µ⋅ = =∫








 

where N  is the number of times the wire penetrates the circular disk having the circular contour as its 
boundary, meaning the number of times the wire circles the contour.  

If the  circular contour is inside the toroid, it contains the inner circle, so 0 ,
2

NIB
r

µ
π

=  notice this is not 

uniform, unlike the linear solenoid. If the circular contour is outside the solenoid, both up currents and 
down currents penetrate the circular area, cancelling, and there is no field. In fact, it is easy to show 
there is no field except within the toroid volume.  

18  Sources of Magnetic Field II 

Magnetostatics: the Biot-Savart Law 
Finding the magnetic field from a steady current distribution is called magnetostatics, in analogy with 
electrostatics, which is finding the electric field from a stationary charge distribution.  But there we had 
a very definite prescription: we knew the inverse-square field from a point charge, and we used the 
principle of superposition, adding together the fields from all the charges, to find the total field. 

When Ampère was doing his experiments, in Paris in the 1820’s, his colleagues included some of the 
world’s best mathematicians, and they set about doing for magnetostatics what had already been 
accomplished in electrostatics:  they looked for a formula for the magnetic field from a little bit of 
current, so that using superposition they’d be able to find the field from any distribution of currents by 
adding all the elements, just like the electric field from many point charges.  

In fact, two of them succeeded in finding a formula that worked, but it’s a very strange formula.  It’s 
called the Biot-Savart law, and here it is: 

The magnetic field at r  from an infinitesimal length d


 of wire carrying current I at the origin is 

 0
2

ˆ
4

Id rd B
r

µ
π

×
=







 

Notice it is inverse-square, like electrostatics (remember r̂  is a unit vector).   
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It’s worth thinking about this field a little.  Take d


  at the origin 
and pointing in the x -direction.  What are the field lines in the 
plane 0x = ?  (This plane includes the y and z axes.)  They are 
circles, curling around as given by the right-hand rule.  But 
they’re not like the field from a wire along the x -axis: the field 
strength from this little current element goes down as the 
inverse square, evidently Ampere’s law doesn’t work for this 
current.  Actually on the x -axis, anywhere, the field is zero, and  
everywhere else it’s perpendicular to the x -axis and circling 
around it.   

In one way at least, this formula is just a mathematical trick: you can’t physically have a little element of 
steady current, opposite sign charges would be piling up at the two ends.  Such an element only has 
meaning as part of a complete circuit.  

The forces between two current elements aren’t even equal and opposite.  Consider this by taking a 

second current element, at ( )1 0 0  pointing in the y -direction. It will feel no force from the first 

current element, but the field from the second current element is certainly nonzero at the origin.  

(Another point: suppose these two “current elements” are just nonrelativistic moving charged particles. If we 
assume the Biot-Savart law is still good, apparently Newton’s Third Law doesn’t work for the magnetic interaction? 
The answer is that the electric and magnetic fields carry energy and momentum—not just the particles—so total 
momentum can be conserved even if the forces between particles are not equal and opposite.  But this is too 
complicated to analyze here.)  

So this is a strange formula, but it works.  Consider a straight finite stretch of wire, part of some circuit.  
What’s the field at distance R ? 

The Biot-Savart rule tells us 

0
2

sin
4

IdydB
r

µ θ
π

=  

and from the discussion above all the dB ’s point into the screen, so 
we just integrate over the (finite) length of wire we’re considering.   
It’s easiest to switch variables from y  to ,θ  notice cot / ,y Rθ =  

so 2 2cos / ,dy R ec d r d Rθ θ θ= =  the integral just becomes  

( )
2

1

0 0
1 2sin / cos cos / .

4 4
I IB d R R
θ

θ

µ µθ θ θ θ
π π

= = −∫  
r  

y  

dθ  

R  

θ  

dy  

Field from current element I d


  

x  

y
 

z  
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 This is done in the book for an infinite wire—but it works for a finite length too, provided it’s part of a 
circuit, so charge isn’t piling up.  For example, you could find the field from a square coil. 

For a round coil, though, the integral isn’t that easy, except for the important case of the field on the 
axis, let’s work it out. 

We show the ring of current as copper-colored, and focus on an increment I d


  at the top of the loop 
(this little vector is perpendicular to the screen/page). At a point P on the ring’s axis distance r from 
the current increment, the magnetic field contribution from this increment is perpendicular to ,r and 
has a component parallel to the x -axis 

0
2 cos

4
IddB
r

µ θ
π

=




 

Adding the contributions from all around the circle, 
the components perpendicular to the x -axis cancel 
out by symmetry, those along the x -axis add to give  

 

 

 

( )
2

0 0
3/22 2 2

2 .
4 2
I R IR RB B

r r R x

µ π µ
π

= = =
+



 

At distances ,x R

2
0

3 ,
2

R IB
x

µ π
π

≅ which is the field from a dipole of strength 2 ,R I AIπ = with A the 

area of the loop, a formula that turns out to be good in this limit for any shaped loop.  

Helmholtz Coils 
Two identical circular coils of radius R are distance R apart along their 
common axis, as shown. This provides an experimentally useful very 
uniform field at the midpoint of the setup, the field only increases 7% 
on going from that center point to the plane of a coil.  This 
configuration is sometimes used to cancel the Earth’s field. 

If the currents in the two coils are opposite, the magnetic field at the 
center point is zero and linear in x to a very good approximation, this is 
useful in magneto-optical traps. 

Exercise: check these field facts.  

d


 
r  θ  

x  R  

dB


 

dB




 
P  
θ  

https://upload.wikimedia.org/wikipedia/commons/8/8d/Helmholtz_coils.png
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Magnetic Field inside a Long Solenoid 
The dots and crosses are the loops of current going in and out of the paper. The blue represents the 
fairly uniform magnetic field inside the solenoid, compared with which the field outside is negligible. We 
take the current ,I and the number of coil turns per unit length .n  

   Then from Ampère’s Law integrated around the black rectangular 
contour, of length ,L  

0 ,B d BL nILµ⋅ = =∫








 

So 0B nIµ=  

and is uniform across the cross section, provided we can neglect end effects (so a very long solenoid).  

Diamagnetism and Paramagnetism: Permeability 
Diamagnetism is a molecular version of Lenz’ law.  Orbiting electrons in atoms and molecule are little 
currents, and when the magnetic field going through a current loop changes, the current itself changes 
in a way to minimize the total change in magnetic field. In other words, if the magnetic field through a 
diamagnetic solid changes, the solid generates its own field to lessen the change. 

A quantitative measure of diamagnetic response is the permeability, denoted by .µ This is a measure of 

the material’s response to a magnetic field, so if the long solenoid discussed just above is filled with 
material the field inside will be .B nIµ=  

The constant 0µ is often called the permeability of the vacuum.   

For many substances µ is very close to 0 ,µ and a convenient parameter is the magnetic susceptibility  

 
0

1.m
µχ
µ

= −  

For diamagnets, the effect is usually small, 510χ −− except bismuth, 41.66 10 ,χ −≈ − × and one big 

exception: superconductors, which exhibit the Meissner effect: on putting one into a field, surface 
currents appear and the field (below a certain strength) cannot penetrate the superconductor, so    

1.χ = −   

All solids have some diamagnetic response, but if some of the atoms also have nonzero magnetic 
moments, there is also a (usually stronger) paramagnetic response, as the molecular magnetic moment 

tends to align with the applied field.  For paramagnetic materials 5 110 .χ − ±
  

For paramagnets, the response to an external field can be found by analyzing a single spin.  The analysis 
breaks down at very low temperatures when enough atoms are aligned with the field to contribute a 
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sufficient extra overall magnetic field. This was at first thought to explain ferromagnetism, but, on 
running the numbers, in iron crystals this magnetic moment lining-up doesn’t occur above a few degrees 
absolute, evidently something else is lining up the moments in iron. Read on.  

Ferromagnetism: Domains 
In a ferromagnet, the individual atoms are little magnets, but in contrast to a paramagnet, there are 
powerful quantum mechanical forces causing nearest neighbors to align magnetically.  (So this 
alignment does not come from the much weaker magnetic dipole-dipole interaction.) 

In particular, the atoms of Fe, Co and Ni (and rare earths) are little magnets: in the incompletely filled 
shell of electrons, the electron spins line up—and electrons are themselves magnets.  (If you’re familiar 
with quantum mechanics, the spins line up to give a symmetrical spin wave function, which means the 
spatial wave function must be antisymmetric, and that keeps the electrons from getting too close, so 
minimizing the repulsive electrostatic energy.) 

So why isn’t every piece of iron magnetic? 

What actually happens is best illustrated by considering a very pure small crystal of iron called a whisker. 
On looking closely, it turns out that almost all atoms are aligned with their neighbors, but the crystal as a 
whole is divided into fully aligned regions, called domains, as shown below. 

The reason is that this is the state of lowest energy. To create a magnetic field costs energy, and if all the 
atoms were aligned, there would be a 
strong dipole field in the surrounding 
space. The arrangement shown here 
generates very little external field. Of 
course, the domain walls cost some 
energy, so calculations are needed to 

find the optimum configuration. 

If this whisker is placed in an external magnetic field, the domain closest to parallel with the external 
field will grow at the expense of the others.  This lowers the energy of the whisker in this new 
environment, just as a compass needle will swing around to align itself with an external field.  

Actually this whisker is very pure iron, a single crystal, and so very soft, magnetically speaking.  That 
means it readily responds to a change in external field, which in turn means that the boundaries 
between domains move easily.  This is good for iron in the core of an electromagnet, but not desirable in 
a permanent magnet.  There you need to be able to line up domains and make it hard for them to 
readjust.  This will be the case if the single crystal is replaced by many small crystals having different 
axes, and also certain non-iron atoms, such as in an alloy, can pin the domain walls and make movement 
difficult.  Obviously, to make a permanent magnet takes a more intense external field than is necessary 
for magnetizing soft iron temporarily.  
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Using Soft Iron to Make a Strong Electromagnet 
We’ve already seen that a way to concentrate the magnetic field from a current 
in a wire is to form a solenoid, which then resembles a bar magnet. A much 
stronger field can be achieved by filling the core of the solenoid with a soft 

ferromagnetic material. “Soft” in this context means a material very responsive to the field, the domain 
walls move readily to ensure a full magnetic response, that is, the atomic magnets in the material fully 

line up with the prevailing field. A soft iron core can increase the magnetic 
field in a solenoid by a factor of thousands (the factor μ/μ0).   Mumetal goes 
to hundreds of thousands, and there are alloys at one million.  Mumetal is 
used to shield a hard disk from the field of the motor.  

(Note: in some books, you might see the notation B Hµ= where B is the physical 

magnetic field and H is the field that would be produced by the currents in the 
wires if no magnetic material were present. This is perhaps 
useful for engineering design, but we won’t be using it.) 

Here is a basic design for the type of magnet used to pick 
up pieces of wrecked cars, etc. Notice how the soft iron 
concentrates the field lines.  The Π shape is the body of 
the magnet.  

The bar along the bottom is the piece of car being picked 
up.  

Click the picture for more details. 

19: Magnetic Induction I 

Faraday’s Idea 
Faraday theorized that since an electric current could generate a powerful magnetic field, maybe a 

magnetic field could generate a current?  

 
 He tested this theory by winding two solenoids around the same 
doughnut shape of soft iron. 
 
He ran a large current in one, looked for a current in the other—and 
didn’t find it.   
 

But he did find something! 
 
 
 

https://upload.wikimedia.org/wikipedia/commons/4/45/Solenoid-1.png
https://www.google.com/imgres?q=solenoid%20iron%20core&imgurl=https%3A%2F%2Fqph.cf2.quoracdn.net%2Fmain-qimg-ace41fccb66d3a432993023750fd24e7.webp&imgrefurl=https%3A%2F%2Fwww.quora.com%2FDoes-a-solenoid-with-a-plastic-tube-rather-than-an-iron-core-can-also-be-considered-as-an-electromagnet&docid=XShWD4T8ffbzLM&tbnid=usMprKBuEEsiSM&vet=12ahUKEwiqmeW03MGMAxWkmYkEHTFADhYQM3oFCIgBEAA..i&w=346&h=271&hcb=2&ved=2ahUKEwiqmeW03MGMAxWkmYkEHTFADhYQM3oFCIgBEAA
http://en.wikipedia.org/wiki/Electromagnet
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He found a transient current appeared in the second coil at the moment the current in the first coil was 
turned on, then a transient opposite current when it was turned off. 

 

Induced EMF 
Faraday discovered that what he called “induced current” 
appeared in a coil whenever the external magnetic field through 
the coil was changing. 
 
Here is one of Faraday’s experiments as portrayed in an 1892 
physics textbook “for advanced students”.  On the right is a 
battery, on the left a fancy galvanometer. 
 
We say there is an induced emf driving this current, emf being 
short for “electromotive force”, the “force” driving the current, 

the voltage. Other sources of emf are electric fields, and the chemical forces inside a battery.  
 

Faraday’s Experimental Findings about emf 
 
For a coil of N loops close together, he found the induced emf to be N times that for one loop (meaning 
the current will be the same if there’s negligible external resistance in the circuit). 
 
For a uniform magnetic field, the emf is proportional to the area of the loop. 
 
It’s proportional to the component of magnetic field perpendicular to the area. 
 
It’s proportional to the rate of change of field. 
 
Faraday thought of the magnetic field lines as representing flow of some ethereal fluid, rather analogous 
to the electric field—but with one big difference. The electric field “fluid” flowed out of positive charges, 
into negative charges. In contrast, on looking at the magnetic field of a solenoid, for example, the north 
and south poles are not like positive and negative electric charge, they’re illusions, the magnetic field 
lines do not end, they just circle around.  

To quantify the interaction of the magnetic field with the loop, bearing this fluid picture in mind, a 
natural quantity to measure is what is the total magnetic flux (Latin for flow) through the loop, to be 
measured by putting a roof over the loop and measuring the total magnetic field through the area.  

 

The flux through a small square with area dA


 is .B dA⋅




 

The total magnetic flux through the surface bounded by the loop is 
written: 

dA


 

B


 

http://en.wikipedia.org/wiki/Faraday's_law_of_induction
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 ,B B dAΦ = ⋅∫




 

summing the contributions from all the small squares.  

 

Recall now Faraday’s first idea was to see if having a magnetic flux 
through a loop/coil generated a current, just as having a current 
generated a field.  

It didn’t—except when it changed.  

Faraday’s Induction Formula 
He saw transient currents when the flux through the loop changed: the induced emf he measured as  

 .Bd
dt
Φ

= −  

Lenz’ Law 
The sign of the induced emf is most simply found by applying Lenz’ 
law, the induced current will generate a magnetic field opposing the 
change in field flux caused by the movement.  

So if the current builds up from zero in the solenoid in the direction 
shown, a north pole is appearing at the top of the solenoid, so the 
current generated in the loop will have a north pole on its 

underside, to partially cancel the field from the solenoid.  

Notice this also means there is a momentary repulsive force between the coil and the ring, if the ring is 
not attached, and the current is sufficient, the ring will jump. There are many YouTube demos, for 
example this.  

We could of course get the same effect by physically moving a magnet towards the coil 
instead of turning on the solenoid.  It’s useful to consider this alternative, because it 
makes explicit that as the response current builds up in the ring, it generates a 
repulsive force so it takes work to keep moving the magnet, this is the source of the 
energy needed to build up the current in the ring (which then dissipates as ohmic 
heat).  

Exercise: Discuss the energy balance when turning on the solenoid.  

 

I 

N 

S 

https://www.youtube.com/watch?v=k2RzSs4_Ur0
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a 

Pulling a square conducting loop out of a 
uniform magnetic field B at speed v 

Uniform field strength B 

a 

No magnetic field here 

v 

A B 

C D 

20  Magnetic Induction II 

Pulling a Square Loop out of a Magnetic Field 
Let’s assume for purposes of illustration that we have a magnetic field pointing inwards, and it ends 
suddenly at the plane 0x =  (which has to be an approximation, since Ampere’s Law wouldn’t be 

satisfied integrating B d⋅




  
around a loop perpendicular to 
this one—but it could be a 
good approximation. For 
example, we could be pulling 
the loop out of the strong field 
between the poles of a 
permanent magnet). 

From Faraday’s law, we know 
the emf   induced is  

/Bd dt= − Φ , so in this case 

avB= , and the current 
direction from Lenz’ law is 
clockwise, to generate inward 
magnetic flux to replace some 

of that lost.  

There’s another way to understand this: consider the electrons in the leg AD of the loop.  As a result of 

the loop being pulled sideways at speed v, they will feel a Lorentz force F qv B= ×
 

 , driving them down 

the wire (since they’re negatively charged).  And since the leg BC is out of the field, there is no balancing 
force to prevent a current from flowing.  Relative to the electrons in the wire, the moving magnetic field 
has generated an electric field along the wire of strength vB, corresponding to a potential difference, or 
emf, of avB.   

*(Footnote for anyone interested:   In fact I think this argument works in the general case.  Visualizing 
the magnetic field a la Faraday, in terms of lines of force, suppose any loop of wire has the magnetic flux 
linking through it changing, because of the loop contorting, moving, or the field changing, or whatever.  
It seems clear from the Faraday picture that flux can only become unlinked by moving across the wire 
(which itself may be just a mathematical curve). If the relative motion of an infinitesimal part of the loop 

and the local magnetic field B


 is v , there is an increment of potential from the Lorentz force 

d v B d= × ⋅




 , and writing /v dx dt=
  this is  

 ( ) ( ) ( )d d dd dx B d d dx B dA B
dt dt dt

= × ⋅ = × ⋅ = ⋅
    

 

   
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where dA


is the element of area swept out by the wire’s movement relative to the magnetic field.  But 

dA B d⋅ = Φ
 

, the change in enclosed flux caused by this movement.  One can write this d E d= ⋅




where E


 is the electric field in the wire’s frame of reference, and, adjusting signs suitable using Lenz’ 

law, this gives /BE d d dt⋅ = − Φ∫


 .  What about the uniform magnetic field between close flat poles of 

a large electromagnet, when the current is increasing? I would visualize that as magnetic field flowing 
radially inwards, find the appropriate velocity, etc.) 

Electric Generators 
Here is a copy of the first electric generator, constructed by Michael 
Faraday in 1831.  A is the magnet; B, B’ the terminals. On rotating the 
copper disc, an emf is generated in the region between the poles of 
the horseshoe-like magnet A. Taking that field to be into the screen, 
and the disc spinning anticlockwise, an electron in the disc will feel a 
radial electric field.  The circuit is completed by having an outside wire 
from the axle to the outside of the disc.  

 

Conceptually, the simplest generator is a single loop of area A  rotated at constant angular speed ω  in 

a constant uniform magnetic field ,B


 the axis of the loop being perpendicular to .B


 The magnetic flux 

through the loop, as previously discussed, is ( ) cosB t AB tωΦ =  so the induced emf is 

( ) sin .t AB tω ω=   This is an AC (alternating current) generator.  If 

the two ends of the loop are connected via slip rings to an external 
resistive circuit, current will flow.  This current will of course give the 
loop a dipole like magnetic field, which from Lenz’ law will be such as 
oppose the imposed rotation.  This means that once the circuit is 
complete, whatever is maintaining the rotation will have to work harder, 
obvious from energy conservation, since the circuit is now generating 
heat in its wires, and possibly useful work as well.  It’s worth checking 
with a small generator, such as for lights on a bicycle, how much harder 
it is to turn when connected to a circuit. 

Eddy Currents 
In fact, any time magnetic field strength is changing, circling electric 
fields are generated, and if these fields are in a conducting medium, 
currents will arise creating magnetic fields partially compensating for 
the changes taking place in the original magnetic field.  These currents 
are called eddy currents—they are reminiscent of the circling eddies in 
the wake of a boat, since they are generated by the nonconservative 
circling electric fields.   Notice the opposite directions of the eddy 
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currents—on entering the magnetic field, the currents oppose the field increase, on leaving, they 
attempt to maintain the field strength. Induction cookers use eddy currents.  

21  Magnetic Induction III 

Electric Motors 
One common electric motor design is just the “loop in a 
magnetic field” generator we already discussed, but now 
run backwards—by which we mean power is supplied from 
a battery, say, to the loop which then becomes a dipole-like 
electromagnet. The loop is between the poles of a 
permanent magnet so it turns, but as it reaches the limit a 
commutator reverses its current supply, so attraction 
suddenly becomes repulsion and since it’s rotating it 
continues around, whereupon the sequence repeats.  

 

Back emf 
As the loop rotates in the magnetic field, that rotation will induce an emf in the loop opposing the 
motion—in other words, opposing the driving emf! 
This is called back emf, and is proportional to speed. 

When a motor is first connected, it is not turning and Ohm’s law gives 0 ,V IR=  where 0V  is the voltage 

of the supply, and R  the resistance of the armature (meaning the loop or coil).  Heat production inside 

the motor is 2 .I R  

When the motor is running under load, there is a back emf back ,V  and now 0 back .V V IR− =  

Heat production in the motor is now 2 :I R  which can be much less than it was initially. 

If a blender is mechanically overloaded so the motor turns slowly, back emf is small, the current is 
higher than designed for, high heat production for some time may cause burnout. 

Back emf problem: 

A motor has an armature resistance of 4Ω. 

It draws 10A from a 120-V line when running at its design speed of 1000 rpm.  

If a load slows it to 250 rpm, what is the current in the armature? 

http://www.physchem.co.za/OB12-ele/machines.htm
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Counter Torque 
A generator is essentially a loop rotating in a magnetic field.  

If the generator is connected to an outside circuit, the induced emf will cause a current to flow: that’s 
the point of the generator! 

But the current carrying wire moving through the field will feel Lenz-type forces opposing its motion: 
called the “counter torque”. 

So to produce a current through the external circuit work must be done. Obviously. 

An example from the book: #34. 

A conducting rod, mass m, resistance R, length  , rests on two frictionless and resistanceless parallel 
rods, in a perpendicular magnetic field B.  At t = 0, a source of emf is supplied to the rails.  How does the 
rod move, if case (a) the source maintains constant current I, and case (b) the source supplies constant 
emf  ? 

Case (a):  in a magnetic field B, the force on a length of wire carrying a current is F I B= ×
 

 , so if B is 
inwards, and the current is flowing downwards (top rail positive) the rod will feel a constant force I B
to the right, and hence accelerate at a uniform rate.  

Case (b): the rod will still feel accelerating force I B , but now the current will vary because the motion 
of the rod through the field generates an emf in the rod, of magnitude /Bd dt v B= − Φ = −  .  You can 

check that this emf is opposing the driving emf: the rod is moving to the right, so the force on a charge q 

in the rod is qv B×


 , upward for a positive charge, opposing the external voltage. But this is also just 

Lenz’ law: the induced emf is such as to oppose the motion.  

Now, the current I is given by ( ) /I v B R= −  , and the force accelerating the rod is I B , so 

 
( )v B Bdvm I B

dt R
−

= =
 




 

From which 

 dv B dt
v B mR

=
−




 

You may recognize the form of this equation: it’s the same as the one we found for charging a capacitor. 
The left-hand side integrates to a log, the right hand side is trivial, a constant times t. We’ll leave that as 
an exercise: the result is just like charging a capacitor, initially the rod accelerates at a constant rate, but 
there’s a limiting speed, as v approaches / B the left-hand side blows up, so to match it longer and 
longer times elapse.  The speed approaches this value but never quite reaches it.   
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What’s happening to the current in the rod at this stage?  It’s getting smaller and smaller, remember 

( ) /I v B R= −  .   

This is an example of back emf: if an external voltage is used to supply a current to a moveable wire, 
which is in a magnetic field and moves because of the Lorentz force, then the magnetic field induces an 
emf in the conductor opposing the supplied voltage.  Again, this is just Lenz’ law.  

Back emf plays an important role in electric motors, and can be a big fraction of the applied emf.  Of 
course, there is no back emf in a jammed motor, and this is why a jammed motor will likely burn out—
the coils are only designed to take the large current from the unopposed external emf for a short time, 
the design assumes there will be back emf when the motor is in use, limiting the current.  

Transformers 
The big reason power is transmitted as ac rather than dc is 
that it’s very easy to change the voltage using transformers 
for ac, and much less power is lost in transmission lines that 
run at high voltage.  A transformer has two solenoid-type 
coils: the input power goes into the primary, producing a 
constantly changing magnetic field, this changing flux induces 
oscillating emf in the secondary coil. To maximize the effect, 
soft iron or some similar alloy is used to guide all the flux from 
the primary through the secondary.  This iron is laminated—

it’s in thin sheets separated by very thin layers of insulation, to minimize eddy current buildup.   

Neglecting energy loss from eddy currents and Ohmic loss in the coils themselves, the back emf in the 
primary must be balancing the input voltage, and this back emf equals /P BN d dtΦ , where BΦ  is the 

total magnetic flux through the coil, this flux coming from both the primary coil and the secondary coil if 
that is part of a circuit.  What is the output voltage? The same rate of change of flux takes place in every 
turn of the secondary (output) coil also, so  

 .S S

P P

V N
V N

=  

The ratio of voltages is just the ratio of the numbers of turns! 

The Betatron 
This is a very clever device for accelerating electrons to very high speeds (close to the speed of light).  It 
uses a magnetic field to make the electrons go in circles of radius r, as earlier (for the cyclotron) we have 

 ( ) ( )2 / ,mv r evB r mv reB r= =  

where we have a perpendicular magnetic field with strength a function of r, arranged by appropriately 
shaped poles of an electromagnet.   

http://en.wikipedia.org/wiki/Transformer
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Now, we increase the magnetic field: this generates a momentary circling electric field, 

 /BE d d dt⋅ = − Φ∫






 

and for a circular path 22 /rE r dB dtπ π= , or ( )/ 2 /E r dB dt= , where B is the average magnetic 

field inside the circle.   

In the betatron, the magnetic field is increases in such a way that the electrons continue to circle at the 
same radius, but are speeded up by the electric field generated by the increasing magnetic field.  

How is that possible?  

( )d mv
E

dt
=  

and if r is constant,  

 
( ) ( )

2
d mv dB r er dBre eE

dt dt dt
= = =  

so provided ( ) / 2B r B= , the electrons will continue to orbit at the same radius! The pole pieces can be 

designed so this is true at the design radius. 

The betatron, unlike the simple cyclotron, can accelerate electrons to relativistic speeds, where they 
have greatly increased mass.   

22   Mutual Inductance 

Definition, and an Important Symmetry 
We’ve already discussed how an ac transformer operates: the alternating current in the first coil 
generates an oscillating magnetic field, the soft iron guides all the magnetic flux through a secondary 
coil, where the changing flux generates an ac emf, which can be tapped off as a power source.  In 
operation, the magnetic flux from both coils threads both coils, and a complete analysis requires solving  
coupled equations.   But since both coils experience the same changing flux, it follows immediately that 
the emfs thereby generated are in the ratios of the number of turns, and since the emf in the primary is 
just balancing the supplied external emf, voltage in secondary/voltage across primary = N2/N1.  
Neglecting the tiny losses from Joule heating (including eddy currents), the power absorbed in the 
primary must be the power supplied by the secondary, so the ratios of the currents will be the inverse of 
the voltage ratios.  
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More generally, if two coils 1, 2 are in proximity, a current through 
one will cause some magnetic flux to thread through the other, so a 
changing current in one will induce an emf in the other.  From the 
Biot-Savart Law, the magnetic field from a current is linear in the 
current (directly proportional to it) so from Faraday’s law, the 
induced emf will be linear in the rate of change of the current I1 in 
coil 1.   

The coefficient of proportionality is called the mutual inductance, 
and is denoted by M: 

 1
2 21 .dIM

dt
= −  

Putting in the minus sign is standard practice—as usual, the direction of the emf and consequent current 
should be found using Lenz’ law.  

The mutual inductance can also be expressed purely in terms of the magnetic flux linkage: 

it’s just the total magnetic flux through coil 2 when there is unit current in coil 1. 

Writing this total flux as 
1 1I =Φ , for current 1I  in coil  1 the total flux through coil 2 is 

1 1 1I I=Φ , and for a 

changing current in coil 1 the induced emf in coil 2 is given by 

 1
2 1I

dId
dt dt=

Φ
= − = −Φ  

It turns out that for two coils, or indeed for any two current-carrying conductors, the mutual inductance 
is symmetric: 

 12 21.M M=  

This is by no means obvious!   It cannot be proved using simple arguments—it is necessary to use vector 
calculus.  Recall that the electrostatic potential could be written in terms of a potential.  It turns out that 
the magnetic field can be written as the curl of a vector potential, and this formulation plays an essential 
role in the proof of symmetry of mutual inductances.  

This symmetry can be handy!  Quite often, it’s easy to evaluate the inductance one way, but not the 
other.  For example, consider trying both approaches when 
coil 1 is a long solenoid going through a single loop, this 
loop being coil 2. 

Another example: consider a small circular loop at the 
center of a large circular loop, both in the same plane. 
Putting a current I  in the big loop gives a field on the axis 
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at the center of 0 / 2I Rµ , so if the small loop has r << R, we have  

2
12 0 / 2 .M r Rµ π=  

Notice this goes down as R increases.  But consider M21:  the little loop has a dipole-like field, certainly at 
large distances, like R.  This field goes through the large loop.   

But how can the amount of this field going through the big loop go down as the size of the big loop 
increases?  (It must, since 12 21M M= , and 12M certainly goes down.) 

Because if the big loop is infinitely large, the total flux through the big loop from a current in the little 
loop is zero!  The magnetic flux goes up in the middle, through the little loop, then back down again 
outside the little loop (remember the magnetic field lines just circulate around).  For a large but finite 
big loop, the net flux through the big loop from a current in the little loop is just the negative of the flux 
passing outside the big loop.  

Self-Inductance: Energy Stored in the Magnetic Field 
We’ve already discussed back emf, a changing current in a coil generates an emf opposing the change in 
current.  The ratio of the induced emf to the rate of change of current is called self inductance, and 
written L, 

/ .LdI dt= −  

(As usual, the minus sign is there to remind us that the emf is opposing the current increase—it is 
necessary to use Lenz’ law, or equivalently energy considerations, to find emf direction in any particular 
case.) 

As increasing current is supplied to a coil, this back emf forces the external power supply to do work 
against it at a rate / .P I LIdI dt= =  

Therefore the total work done is increasing the current from zero to I is 21
2 .L IdI LI=∫  

This is directly analogous to charging a capacitor:  in that case, it took more work to add more charge, 
and we saw the energy was stored in the electric field, with density 21

02 Eε .  For the inductance, the 

energy is similarly stored in the magnetic field.  We can check that for a solenoid:  for N turns and length 
 ,  the field inside the solenoid 0 /B NIµ=  .   

The self-inductance is the total flux through the N turns for unit current, take the cross-sectional area to 
be A, this is 

2
0 / .L NAB N Aµ= = 

 

Writing 0/I B Nµ=  , we find 
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22
2 201 1

02 2
0

1 /
2

N A BLI A B
N

µ µ
µ

 
= = 

 







 

That is, the magnetic energy density is 2
0/ 2 .B µ  Recalling that 7

0 4 10µ π −= × , a cubic meter at one 

tesla contains megajoules, highly relevant for designers of big particle accelerators, where the current is 
flowing in superconductor.  If these are accidently heated, they become normal resistors, with 
consequent sudden—explosive—loss of field.  This has happened. 

We can use this energy density approach to find the inductance of a coaxial cable quite easily: 

Between r1, r2 the magnetic field is 0 / 2B I rµ π= , so the energy density per unit length is  

 
2 2

1 1

2
2 20 0 2

0 0 1

1 1 12 2 ln
2 2 2 2 2

r r

r r

I rB rdr rdr I
r r

µ µπ π
µ µ π π

   = =   
   ∫ ∫  

from which 0 2

1

ln
2

rL
r

µ
π

=  per meter.  Notice that letting r2 go to infinity, we conclude that a single 

infinitely long wire of radius r1 has infinite magnetic energy density per unit length!   Of course, there is 
no such thing as an infinitely long wire, and the divergence is very slow.  It is also apparent that the self-
inductance of, for example, a single loop of wire must depend on the radius of the wire as well as that of 
the loop. 

23   LR, LC and LRC Circuits 

LR Circuits 

A battery is connected to L, R in series:   0 .dIV IR L
dt

= +  

(Quick sign check: on first connecting the battery, L will oppose the 
current increasing from zero—so for positive /dI dt , the inductance 
is working against the battery.) 

The math here is very similar to the capacitor: 

0

dI dt
V IR L

=
−

 

The integration is routine,  and ( )/0 1 tVI e
R

τ−= −
 
with / .L Rτ =  
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Wall 

Block on frictionless 
surface 

LC Circuits: Oscillations 
We first assume there’s zero resistance, just C and L in series, with an 
open switch.  We charge C, then close the switch.  Charge will begin to 
flow through the inductance from one plate of C to the other. The 

current  /I dQ dt= −   will build up, but its rate of increase will depend 

on the inductance, the back emf /LdI dt balancing the voltage /Q C
of the capacitor.  

That is,   
2

2

Q dI d QL L
C dt dt
= = −

       
or         

2

2 .d Q QL
dt C

= −  

Now compare this charge equation with the equation for displacement of a mass on a spring:  suppose 
the mass can slide on a smooth table, the spring being attached to a wall.   The equation is: 

 
2

2 .d xm kx
dt

= −  

Here m is the mass, k the spring constant, and x the linear displacement from the spring’s relaxed length 
position.  It’s clear that these two equations are mathematically identical!    

It’s worth seeing what corresponds to 
what.  The inductance L corresponds 
to the mass m.  These are both 
“inertial” terms:  once the mass is 
moving, its mass or inertia keeps it 
going, so if it’s pulled to one side then 

let go, the spring pulls it back, accelerating it, but even when the spring is back to its natural length the 
mass keeps moving and takes the mass the same distance the other way before stopping.  For the LC 
circuit, the current is analogous to the velocity of the mass, and the inductance opposes change in 
current just as mass opposes change in velocity: when the initially charged capacitor has completely 
discharged, the inductance keeps the current going until the capacitor has its initial charge reversed.  

We can see from the equations that the spring constant k corresponds to the inverse of the capacitance, 
1/C,  so a bigger capacitance is like a softer spring.  A larger capacitance can absorb charge more easily, 
just as a softer spring can be more easily stretched.   

For the mass on the spring on a frictionless surface, pulled aside by 0x  and let go, 0 cosx x tω= , here 

/k mω = . 

Similarly, if at 0t = there is zero current and charge 0Q on the capacitor, 0 cosQ Q tω= , where 

1/ .LCω =  



96 
 

The trading of potential energy stored in the spring and kinetic energy in the moving mass, with overall 
energy conserved at all times, is mirrored here in the trading of electric field energy in the capacitor and 
magnetic field energy in the inductance.   

To check conservation of energy here, note that 0 cosQ Q tω= means that 0/ sinI dQ dt Q tω ω= − = , 

and total energy 

 
2 2 2 2 2 22 2
0 0 0

total
cos sin

2 2 2 2 2
Q t LQ t QQ LIU

C C C
ω ω ω

= + = + =  

using 2 1/ .LCω =  

It’s also worth mentioning here that this L, C circuit can be 
very simple: for example, a ring with a gap: 

The two balls are the capacitor: begin with one of them 
positive, the other equally negative.  The ring is of course an 
inductor: a current going around it creates a magnetic field.   

Initially, then, we have an electric dipole, with the 
corresponding field.  But this is an oscillating field.  The 
magnetic field from the current also oscillates, and we know 
that creates another electric field.  The picture is not yet 
complete—there is one crucial element missing—but we can 

begin to see how an oscillating circuit might emit electromagnetic waves.   

LRC Circuit 
How does this picture change if we include resistance?  Obviously, the same way, essentially, the 
oscillating mass on a spring changes if we include air or fluid resistance: the oscillations are damped.  

More formally, we must add a term IR to the voltage sum: 

 
2

2 0d Q dQ QL R
dt dt C

+ + =  

This equation for Q is identical to the equation of motion for x for a 
damped mass on a spring:  imagine a mass in molasses.   L is the 
mass, 1/C is the spring constant k and R is the damping term b:  see 
that earlier work.   

This means that the behavior of Q as a function of time is exactly the 
same as the behavior of x in the damped oscillator. In particular, 
there are two different regimes: lightly damped, where the sign of 
charge on the capacitor oscillates back and forth, gradually dying 
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away, and heavily damped, where the charge slowly drains through the system, decreasing 
exponentially, with no oscillation.  The boundary between the two is critical damping, and occurs when 

the damping term 2 4 /R L C= . 

It also follows from the exact analogy with the damped mechanical oscillator that introducing damping 
(resistance) lowers the frequency of the oscillations, but for small damping this is a very small effect.  

However, as the damping approaches the critical value 2 4 /R L C= , the frequency goes to zero. 

home 

24   Circuits with AC Source 

Pure Resistance R 
If we put an alternating voltage 0 cosV V tω= across a resistor R, from Ohm’s law the current will be 

0 cosI I tω= and 0 0 .V I R=   The power dissipation in the resistor 2 21
0 0 0 0 rms2cos / .P I V t I V V Rω= = =  

Pure Inductance L 
If we put an alternating voltage across an inductor L, having zero 
resistance R, this external voltage must be exactly matched by the 
back emf generated.   

 

That is, / .V LdI dt=   So if 0 cosV V tω= , we must have a current 

0 sinI I tω= , with 0 0.V LIω=   

 

This looks a lot like Ohm’s law, so by analogy we write  

0 0 LV I X=  

and call LX the inductive reactance.   

But there’s a big difference from a resistance: no power is dissipated by a pure inductance:  
1

0 0 0 02sin cos sin 2 0.P I V t t I V tω ω ω= = =  

It’s worth plotting voltage and current as functions of time on the same graph.  For 0 cosV V tω= , at 

0t = the voltage is at its maximum positive value, so the current is increasing at a maximum rate.  One-
quarter of a cycle later ( / 2tω π= ) the external applied voltage is zero, so at that instant the current is 
not changing—in fact, the current has reached its maximum positive value.  So we see the current 

https://galileoandeinstein.phys.virginia.edu/2415/home.html
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reaches its maximum one quarter of a cycle (or π/2 or 90°) after the maximum voltage:  we say the 
current lags behind the voltage by 90°.  

Note: the graph below, and the subsequent ones on AC circuits, were generated by an Excel 
spreadsheet available for download from my 2415 Home Page.  Try it—it’s a good way to explore these 
circuits! 

 

Current and emf in a purely inductive AC circuit: emf leads current by a quarter cycle (ELI). 

Pure Capacitance C 
Putting 0 cosV V tω= across a capacitor, again with no resistance (or 

inductance) in the circuit, at 0t = the voltage is at its maximum positive 
value, which means the capacitance contains its maximum positive 
charge in the cycle.  At that moment, the current must be zero: the 
capacitance has charged up fully, and is about to begin discharging as it 
follows the cycle.  

 

The equations are 0 cos /V V t Q Cω= = and 0 0/ sin sinI dQ dt CV t I tω ω ω= = − = − . 

We write 0 0 CV I X= where CX is the capacitive reactance 1/ .CX Cω=  

https://galileoandeinstein.phys.virginia.edu/2415/home.html
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Current and emf in a purely capacitative AC circuit: current leads emf by a quarter cycle (ICE). 

Driven  LRC Circuit 
  

The equation describing charge variation as a function of time is: 

2

02 cosd Q dQ QL R V t
dt dt C

ω+ + =
 

where we’ve arbitrarily fixed time zero to correspond to a 
maximum of the driving field.  Obviously, if the AC field is turned 
on at time zero, there is some transient behavior before it settles 
down.  That might be important in some situations, but we’re 

only going to analyze the “steady state” situation, the rhythm the system settles into after the AC has 
been on for many cycles. 

The equation can be solved (most simply using complex numbers);  we’ll skip the derivation and present 
the solution for the current.  As one would expect, it has the same period of variation as the driving emf, 
but is not in general in phase.  Explore the solutions using  the spreadsheet! 

The current is ( )0 cosI I tω ϕ= −  where 

 
( ) ( )( )

10 0
0 2 22 2

, tan .
1/

L C

L C

V V X XI
RX X R L C R

ϕ
ω ω

− − = = =  
 − + − +

 

(You can of course check that this is a solution by plugging it into the equation.) 

The form of φ tells us immediately that for a purely inductive circuit, the emf leads the current (ELI), for 
a purely capacitative circuit, current leads emf (ICE).   

https://galileoandeinstein.phys.virginia.edu/2415/home.pdf


100 
 

Resonance 
Something surprising happens if 1/L Cω ω= —there is no phase lag, and the current amplitude is given 
by Ohm’s law for the resistor alone!  Notice this is the same value of ω at which a pure LC circuit 
oscillates.  This is resonance: the driving frequency coincides with the natural frequency of the circuit, 
and the amplitude of the oscillations is limited only by the damping—the resistance.  

Another way to understand this is to remember that the current through all three elements (L, C, R) of 
the circuit has the same phase.  From Ohm’s law, the voltage drop across the resistor oscillates exactly 
in phase with the current.  The voltage change across the inductance has phase 90° ahead of the 
current’s phase, that across the capacitor has phase 90° behind  the current.  This means that the 
voltage changes across the inductance and the capacitor are 180° out of phase—meaning they are 
opposite, so if the amplitudes are equal, they’ll exactly cancel!  (Check this on the spreadsheet.) 

Power Factor in an AC Circuit 

As  usual,  P VI= —in this case, using a standard trig identity,  and 2 1
2cos , cos sin 0,t t tω ω ω= = we 

have 

( )
( )

0 0

0 0

1
0 0 rms rms2

cos cos

cos cos cos sin sin
cos cos .

P VI V I t t

V I t t t
V I V I

ω ω ϕ

ω ω ϕ ω ϕ

ϕ ϕ

= = −

= +

= =
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