
3. Fermat’s Principle of Least Time 
Michael Fowler  

Another Minimization Problem… 
Here's another minimization problem from the 1600's, even earlier than the brachistochrone.  Fermat 
famously stated in the 1630’s that a ray of light going from point A to point B always takes the route of 
least time -- OK, it's trivially trivially true in a single medium, light rays go in a straight line, but it's a lot 
less obvious if, say, A is in air and B in glass. Notice that this is closely related to our previous topic, the 
calculus of variations -- if this is a minimal time path, varying the path by a small amount will not change 
the time taken to first order.  (Historical note:  actually what amounted to Fermat’s principle was first stated by 
Alhazen, in Baghdad, around 1000 AD.) 

This seemed very mysterious when first extensively discussed, in the 1600's.  In the last part of that century, and 
through the 1700's, Newton was the dominant figure, and he believed that light was a stream of particles.  But 
how could the particle figure out the shortest time path from A to B?  

In fact, there was one prominent physicist, Huygens', who thought light might be a wave, and, much later, this 
turned out to be the crucial insight.  The main objection was that waves go around corners, at least to some 
extent, it seemed that light didn't.  (Also, they exhibit diffraction effects, which no one thought they'd seen for 
light, although in fact  Newton himself had observed diffraction -- Newton's rings -- but had an ingenious 
explanation, as always, of why his particle picture could explain what he saw.)  Anyway, in 1678, Huygens' 
suggested the following picture: it's a simple beginning to understanding wave propagation, most 
notably it omits phases (later added by Fresnel) but it was a beginning.  

Huygens' Picture of Wave Propagation  
If a point source of light is switched on, the wavefront is an expanding sphere centered at the source.  
Huygens suggested that this could be understood if at any instant in time each point on the wavefront 
was regarded as a source of secondary wavelets, and the new wavefront a moment later was to be 
regarded as built up from the sum of these wavelets. For a light shining continuously, the process just 
keeps repeating.  
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You might think that if a point on the wavefront is a new source, wouldn't the disturbance it generates 
be as likely to go backwards as forwards?  Huygens did not address this point.  In fact, it's not easy to 
give a short satisfactory answer.  We'll discuss propagation of light (and of course other electromagnetic 
waves) fully in  the second semester of E&M.  

Huygens' principle does explain why the wavefront stays spherical, and more important, it explains 
refraction -- the change in direction of a wavefront on entering a different medium, such as a ray of light 
going from air into glass.  Here's how:  If the light moves more slowly in the glass, velocity v  instead of c
, with v c< , then Huygens' picture predicts Snell’s Law, that the ratio of the sines of the angles to the 
normal of incident and transmitted beams is constant, and in fact is the ratio /c v .  This is evident from 
the diagram below: in the time the wavelet centered at A has propagated to C, that from B has reached 
D, the ratio of lengths AC/BD being /c v .  But the angles in Snell’s Law are in fact the angles ABC, BCD, 
and those right-angled triangles have a common hypotenuse BC, from which the Law follows.  

Notice, though, the crucial fact: we get  Snell's law on the assumption that the speed of light is slower in 
glass than in air.  If light was a stream of particles, the picture would have to be that they encountered a 
potential change on going into the glass, like a ball rolling on a horizontal floor encountering a step, 
smoothed out a bit, to a different level. This would give a force perpendicular to the interface on going 
from one level to the other, and if the path is bent towards the normal, as is observed, the ball must 
speed up -- so this predicts light moves faster in glass.  It wasn't until the nineteenth century, though, 
that measuring the speed of light in glass (actually I think water) was technologically possible.  

Wave front 
at time t 

New wave front slightly later 

Sample secondary wavelets 

Huygens’ picture of how a spherical wave propagates:  each 
point on the wave front is a source of secondary wavelets that 
generate the new wave front. 
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In fact, even in the early nineteenth century, the wave nature of light was widely doubted.  Fresnel 
greatly improved Huygens' crude picture, fully taking into account the interference between secondary 
wavelets having different phases.  One of the principal skeptics of the wave theory, the mathematician 
Poisson, pointed out that it was obvious nonsense because, using Fresnel's own arguments, it predicted 
that in the very center of the dark shadow of a sphere illuminated by a point source of light, there 
should be a bright spot:  all the "light waves" grazing the edge of the sphere would  generate secondary 
wavelets which would land at that spot in phase. A bright spot at the center of the dark disk seemed 
obvious nonsense, but an experimentalist colleague in Paris, Arago, decided to try the experiment 
anyway -- and the spot was there.  It's now called the Poisson spot, and it gave a big boost to the wave 
theory in France (it  was already fully accepted in England, where Thomas Young did the double slit 
interference pattern, and compared it to the wave pattern in a similarly configured ripple tank, 
presenting the results to the Royal Society in 1803). 

Fermat’s Principle 
We will now temporarily forget about the wave nature of light, and consider a narrow ray or beam of 
light shining from point A to point B, where we suppose A to be in air, B in glass.  Fermat showed that 
the path of such a beam is given by the Principle of Least Time: a ray of light going from A to B by any 
other path would take longer. How can we see that? It’s obvious that any deviation from a straight line 
path in air or in the glass is going to add to the time taken, but what about moving slightly the point at 
which the beam enters the glass? 

A 

B 

WA 

air glass 

Huygens’ explanation of refraction: showing two wavelets 
from the wavefront AB.  WB is slowed down compared with 
WA , since it is propagating in glass.  This turns the wave front 
through an angle. 

WB 
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Where the air meets the glass, the two rays, separated by a small distance CD = d  along that interface, 
will look parallel: 

 

(Feynman gives a nice illustration: a lifeguard on a beach spots a swimmer in trouble some distance 
away, in a diagonal direction. He can run three times faster than he can swim. What is the quickest path 
to the swimmer?) 

Moving the point of entry up a small distance d , the light has to travel an extra 1sind θ  in air, but a 

distance less by 2sind θ  in the glass, giving an extra travel time 1 2sin / sin /t d c d vθ θ∆ = − .   For the 

classical path, Snell’s Law gives 1 2sin / sin /n c vθ θ = = , so 0t∆ = to first order. But if we look at a 
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Magnified view of 2 rays passing through 
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Rays encounter interface distance CB = d 
apart. 

B 

BD =   

 

 D 

A 

ray 2 

ray 1 

  



 5 

series of possible paths, each a small distance d away from the next at the point of crossing from air 
into glass, t∆  becomes of order /d c away from the classical path. 

But now let's take a closer look at the Huygens picture of light propagation: it would suggest that the 
light reaching a point actually comes from many wavelets generated at different points on the previous 
wavefront.  A handwaving generalization might be that the light reaching a point from another point 
actually includes multiple paths. To keep things manageable, let's suppose the light from A to B actually 
goes along all the paths that are straight in each medium, but different crossing point.  Also, we'll make 
the approximation that they all reach B with equal amplitude. What will be the total contribution of all 
the paths at B?  Since the times along the paths are different, the signals along the different paths will 
arrive at B with different phases, and to get the total wave amplitude we must add a series of unit 2D 
vectors, one from each path.  (Representing the amplitude and phase of the wave by a complex number 
for convenience -- for a real wave, we can take the real part at the end.) 

When we map out these unit 2D vectors, we find that in the neighborhood of the classical path, the 
phase varies little, but as we go away from it the phase spirals more and more rapidly, so those paths 
interfere amongst themselves destructively.  To formulate this a little more precisely, let us assume that 
some close by path has a phase difference φ from the least time path, and goes from air to glass a 

distance x away from the least time path: then for these close by paths, 2axϕ = , where a depends on 

the geometric arrangement and the wavelength.  From this, the sum over the close by paths is an 

integral of the form
2iaxe dx∫ .  (We are assuming the wavelength of light is far less than the size of the 

equipment.)  This is a standard integral, its value is / iaπ , all its weight is concentrated in a central 

area of width 1/ a , exactly as for the real function 
2axe− .   

This is the explanation of Fermat’s Principle -- only near the path of least time do paths stay 
approximately in phase with each other and add constructively. So this classical path rule has an 
underlying wave-phase explanation.  In fact, the central role of phase in this analysis is sometimes 
emphasized by saying the light beam follows the path of stationary phase.  

Of course, we’re not summing over all paths here -- we assume that the path in air from the source to 
the point of entry into the glass is a straight line, clearly the subpath of stationary phase. 

Reflection, Too 
Suppose you look at a point of light reflected in a mirror. Imagine the point sending out rays in all 
directions, as it does.  The ray that enters your eye from the mirror goes along the shortest bouncing-
off-the-mirror path.  You can prove that this is equivalent to angle of incidence equals angle of reflection 
by considering the path difference for a nearby path. 

Of course, for a curved mirror there may be more than one shortest path.  To take an extreme case, 
consider the two-dimensional scenario of a perfectly reflecting ellipse with a point light source inside. If 
the source is at one focus of the ellipse, all the light will be reflected to the other focus.  And, all the 
paths will have the same length!  (Recall an ellipse can be constructed with a piece of string, the ends 
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nailed down at the foci, the string stretched taut.)  A parabolic mirror is the limiting case of an ellipse 
with the other focus sent to infinity, so parallel rays coming in along the axis from a distant star will all 
go to the focus in phase with each other. 

The Bottom Line: Geometric Optics and Wave Optics 
In geometric optics, mirrors, lenses, telescopes and so on are analyzed by tracking narrow rays of light 
through the system, applying the standard rules of reflection and refraction.  Despite Huygens’ picture, 
most people using this well-established technique before 1800 thought the rays were streams of 
particles.  Fermat’s Principle of Least Time was an elegant formulation of the laws of motion of this 
stream -- it reduced all observed deflections, etc., to a single statement.  It even included phenomena 
caused by a variable refractive index, and consequent curved paths for light rays, such as mirages, 
reflections of distant mountains in the middle-distance ground on hot days caused by a layer of hotter 
air close to the ground.  

But despite its elegance, no theoretical explanation of Fermat’s Principle was forthcoming until it was 
established that light was a wave -- then it became clear. The waves went out over all possible paths, 
but phase differences caused almost perfect cancellation except for paths in the vicinity of the shortest 
possible. 

We shall find a similar connection between classical mechanics and quantum mechanics. 
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