
 

8.  A New Way to Write the Action Integral 
Michael Fowler 

Introduction 
Following Landau, we'll first find how the action integral responds to incremental changes in the 
endpoint coordinates and times, then use the result to write the action integral itself in a new, more 
intuitive way.  This new formulation shows very directly the link to quantum mechanics, and variation of 
the action in this form gives Hamilton's equations immediately.   

Function of Endpoint Position 
We’ll now think of varying the action in a slightly different way.  (Note:  We’re using Landau's notation.)  
Previously, we considered the integral of the Lagrangian over all possible different paths from the initial 

place and time ( )1
1,q t  to the final place and time 

( )2
2,q t  and found the path of minimum action.  Now, 

though, we’ll start with that path, the actual physical 
path, and investigate the corresponding action as a 
function of the final endpoint variables, given a fixed 
beginning place and time. 

Taking one degree of freedom (the generalization is 
straightforward), for a small path variation the 
incremental change in action 
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 

 

(Recall that first term comes from the calculus of variations when we allow the end point to vary -- it’s exactly the 
same point we previously discussed in the brachistochrone problem of fastest time for a given horizontal distance, 
allowing the vertical position of the endpoint to be a free parameter.)  

With the incremental variation, we’ve gone from the physical path P  (followed by the system in 

configuration space from ( )1
1,q t  to ( )2

2,q t ) to a second path P′beginning at the same place and time, 

and ending at the same time 2t  as ,P but at a slightly different place ( ) ( )2
2q q tδ+ . 

Both paths ,P P′ are fully determined by their initial and final positions and times, so ,P P′must 
correspond to slightly different initial velocities.  The important point is that since both paths describe 
the natural dynamical development of the system from the initial conditions, the system obeys the 
equations of motion at all times along both paths, and therefore the integral term in the above equation 
is identically zero.   

  

  

 

  

  
  

  

  

Both  are physically realizable paths. 



2 
 

Writing ( ) ( )2
2 ,q t q p pδ δ= = the action, regarded as a function of the final position variable, with the 

final time fixed at 2t , has the differential 

( )( ) ( ) ( )
2
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δ δ δ δ ∂
= = = ∂ 

 

For the multidimensional case, the incremental change in the action on varying the final position 
variable is given by (dropping the superscript) 

/ ,i iS q p∂ ∂ =  

Function of Endpoint Time 
What about the action as a function of the final point arrival time?   

Since 
2

1

,
t

t

S Ldt= ∫  the total time derivative ( )( )2
2 2/ , ,dS dt L q t= the value of the Lagrangian at the 

endpoint.  Remember we are defining the action at a point as that from integrating along the true path 
up to that point.   

Landau denotes 2t by just t , so he writes /dS dt L= , and we’ll be doing this, but it’s crucial to keep in 

mind that the endpoint position and time are the variables here! 

If we now allow an incremental time increase, 2 2t t dt→ + , with the final coordinate position as a free 
parameter, the  dynamical path will now continue on, to an incrementally different finishing point.  

This will give (with t understood from now on to mean 2t , and iq means ( )2
iq )  

( ),
.i

i i i
i ii

dS q t S S Sq p q
dt t q t

∂ ∂ ∂
= + = +
∂ ∂ ∂∑ ∑   

Putting this together with /dS dt L=  gives immediately the partial time derivative 

/ i i
i

S t L p q H∂ ∂ = − = −∑   

and therefore, combining this with the result / i iS q p∂ ∂ =  from the previous section,  

( ), .i i i
i

dS q t p dq Hdt= −∑  

This, then, is the total differential of the action as a function of the spatial and time coordinates of the 
end of the path. 
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Varying Both Ends 
The argument given above for the incremental change in action from varying the endpoint is clearly 
equally valid for varying the beginning point of the integral (there will be a sign change, of course), so 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 2 2 2 1 1 1
2 1 2 1, , , .i i i i i i

i i
dS q t q t p dq H dt p dq H dt= − − +∑ ∑  

The initial and final coordinates and times specify the action and the time development of the system 
uniquely.   

(Note: We’ll find this equation again in the section on canonical transformations -- the action will be seen there to 
be the generating function of the time-development canonical transformation, this will become clear when we get 
to it.)  

Another Way of Writing the Action Integral 
Up to this point, we’ve always written the action as an integral of the Lagrangian with respect to time 
along the path, 

( ) ( )( )
( )

( )2
2

1
1

,
2 1

2 1
,

, , ,
q t

i i
q t

S q t q t Ldt= ∫ . 

However, the expression derived in the last section for the increment of action generated by an 
incremental change in the path endpoint is clearly equally valid for the contribution to the action from 
some interior increment of the path, say from ( ),q t  to ( ),q dq t dt+ + , so we can write the total action 

integral as the sum of these increments: 

( ), .i i i
i

S q t dS p dq Hdt = = − 
 
∑∫ ∫  

In this integral, of course, the idq add up to cover the whole path.  

(In writing ( ),iq t  we’re following Landau’s default practice of taking the action as a function of the final 

endpoint coordinates and time, assuming the beginning point to be fixed. This is almost always fine—
we’ll make clear when it isn’t.) 

How this Classical Action Relates to Phase in Quantum Mechanics 
The link between classical and quantum mechanics is particularly evident in the expression for the 
action integral given above.  In the so-called semi-classical regime of quantum mechanics, the de Broglie 
waves oscillate with wavelengths much smaller than typical sizes in the system.  This means that locally 
it’s an adequate approximation to treat the Schrodinger wave function as a plane wave, 

( ) ( ) ( ) ( ) ( )( )/, , ,i kx t i px Etx t A x t e A x t eωψ − −= =   

where the amplitude function ( ),A x t  only varies over distances much greater than the wavelength, and 

times far longer than the oscillation period.  This expression is valid in almost all the classically accessible 
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regions, invalid in the neighborhood of turning points, but the size of those neighborhoods goes to zero 
in the classical limit. 

As we’ve discussed earlier, in the Dirac-Feynman formulation of quantum mechanics, to find the 
probability amplitude of a particle propagating from one point to another, we add contributions from all 
possible paths between the two points, each path contributing a term with phase equal to /i   times 
the action integral along the path.  

From the semi-classical Schrodinger wave function above, it’s clear that the change in phase from a 
small change in the endpoint is ( ) ( )/i pdx Edt− , coinciding exactly with the incremental 

contribution to the action in  .i i
i

S dS p dq Hdt = = − 
 
∑∫ ∫   

So again we see, here very directly, how the action along a classical path is a multiple of the quantum 
mechanical phase change along the path. 

Hamilton’s Equations from Action Minimization 
For arbitrary small path variations ,q pδ δ in phase space, the minimum action condition using the form 
of action given above generates Hamilton’s equations.   

(Note for nitpickers: This may seem a bit surprising, since we generated this form of the action using the equations 
along the actual dynamical path, how can we vary it and still use them? Bear with me, you’ll see.) 

We’ll prove this for a one dimensional system, it’s trivial to go to many variables, but it clutters up the 
equations. 

For a small path deviation ,q pδ δ , the change in the action ( )S pdq Hdt= −∫  is 

( ) ( ) ( )/ / 0S pdq pd q H q qdt H p pdtδ δ δ δ δ= + − ∂ ∂ − ∂ ∂ =  ∫  

and integrating ( )pd qδ  by parts, with 0p qδ δ= =  at the endpoints,  

( ){ } [ ] ( ){ }/ / 0.S p dq H p dt p q q dp H q dtδ δ δ δ= − ∂ ∂ + − + ∂ ∂ =∫ ∫  

The path variations ,p qδ δ  are independent and arbitrary, so must have identically zero coefficients—
Hamilton’s equations follow immediately, / ,q H p= ∂ ∂ / .p H q= −∂ ∂  

Again, it’s worth emphasizing the close parallel with quantum mechanics: Hamilton’s equations written 
using Poisson brackets are: 

[ ] [ ], , , .q H q p H p= =   

In quantum mechanics, the corresponding Heisenberg equations of motion for position and momentum 
operators in terms of commutators are 



5 
 

( )[ ] ( )[ ]1 / , , 1 / , .q i H q p i H p= = 
   

How Can p, q Really Be Independent Variables? 
It may seem a little odd at first that varying ,p q as independent variables leads to the same equations as 
the Lagrangian minimization, where we only varied ,q and that variation “locked in” the variation of .q  
And, isn’t p defined in terms of ,q q  by / ,p L q= ∂ ∂   which is some function of ,q q ?  So wouldn’t 
varying q  automatically determine the variation of p ? 

 The answer is, no, p is not defined as /p L q= ∂ ∂   from the start in Hamilton’s formulation.  In this 
Hamiltonian approach, ,p q  really are taken as independent variables, then varying them to find the 
minimum path gives the equations of motion, including the relation between p  and ,q q .   

This comes about as follows: Along the minimum action path, we just established that 

( ), .dH p q qdp pdq= −   

We also have that ,L pq H= − so (Legendre transformation!) 

( ), ,dL q q pdq pdq= +    

from which, along the physical path, ( )  constant
/ .

q
p L q= ∂ ∂ 

 
 So this identity, previously written as the 

definition of ,p now arises as a consequence of the action minimization in phase space. 
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