
22. Anharmonic Oscillators 
Michael Fowler 

Landau (para 28) considers a simple harmonic oscillator with added small potential energy terms 
3 41 1

3 4m x m xα β+ .  We’ll simplify slightly by dropping the 3x term, to give an equation of motion 

 2 3
0 .x x xω β+ = −  

(We'll always take β positive, otherwise only small oscillations will be stable.) 

We’ll do perturbation theory (following Landau): 

 ( ) ( )1 2x x x= + +   

(Standard practice in most books would be to write ( ) ( )0 1x x x= + +  with the superscript indicating 
the order of the perturbation -- we're following Landau's notation, hopefully reducing confusion…)  

We take as the leading term 

 ( )1 cosx a tω=  

with the exact value of ω , 0ω ω ω= + ∆ .  Of course, we don’t know the value of ω  yet—this is what 

we’re trying to find. But even if we did somehow have the value of ω  exactly right, this expression 
would not be a full solution to the equation: the motion is certainly periodic with period 2 /π ω , but the 
complete description of the motion is a Fourier series including frequencies ,n nω an integer, since the 

potential is no longer simple harmonic.  

Putting this correct frequency into the equation gives a nonzero left hand side, so we rearrange.  We 

subtract ( )( )2 2
01 / xω ω−   from both sides to get: 

 
2 2

2 30 0
02 21 .x x x xω ωω β
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 

+ = − − − 
 

   

Putting ( )1x into the left-hand side now gives zero: if the equation had zero on the right hand side, this 
would just be a free (undamped) oscillator with natural frequency ,ω  not 0.ω     

Now we can do perturbation theory. The equation for ( )2x is: 
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 ( ) ( ) ( )( ) ( )
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02 21 .x x x xω ωω β
ω ω

 
+ = − − − 

 
   

Notice that the second term on the right hand side includes ( )1 2 cosx a tω ω= − . This equation now 

represents a driving force on an undamped oscillator exactly at its resonant frequency, so would cause 
the amplitude to increase linearly, obviously an unphysical result, since we’re just modeling a particle 
sliding back and forth in a potential, no energy being supplied from outside.  

The key is that there is also a resonant driver in that first term ( )( )31xβ− .  Clearly these two driving 

terms have to cancel, and this requirement nails .ω∆  Here’s how: 

( )( ) ( )
31 3 3 3 3 1

4 4cos cos cos3x a t a t tβ β ω β ω ω− = − = − +  

so the resonant driving terms cancel provided 

 ( )
2

3 203
4 2cos 1 cos 0.a t a tωβ ω ω ω

ω
 

− − − − = 
 

 

Remembering 0ω ω ω= + ∆ , this gives (to this order) 
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(Actuallyω  in the denominator, but that’s a higher order correction.) 

Note that the frequency increases with amplitude: the 4x potential gives an increasingly stronger 
restoring force with amplitude than the harmonic well.  

Resonance in a Damped Driven Oscillator: a Brief Review 
The linear damped driven oscillator: 

( )2
02 / .i tx x x f m eλ ω Ω+ + =   

(Following Landau’s notation here—note it means the actual frictional drag force is 2 mxλ  )  

Looking near resonance for steady state solutions at the driving frequency, with amplitude b , phase lag 

δ , that is, ( ) ( )i tx t be δΩ += , we find 

 ( ) ( )2 2
02 / .ibe i f mδ λ ω−Ω + Ω+ =  

For a near-resonant driving frequency 
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 0ω εΩ = +   

and assuming the damping to be sufficiently small that we can drop theελ  term along with 2ε , the 
leading order terms give 

( ) 0/ 2ibe f m iδ ε λ ω= − − , 

so the response, the dependence of amplitude of oscillation on frequency, is to this accuracy 

 
( )2 2 22
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= =
+Ω − +

 

(We might also note that the resonant frequency is itself lowered by the damping, but this is another second-order 
effect we ignore here.) 

The rate of absorption of energy equals the frictional loss. The 
friction force 2 mxλ  on the mass moving at x  is doing work at 
a rate: 

2 2 22 .mx mbλ λ= Ω  

The half width of the resonance curve as a function of driving 
frequency Ω  is given by the damping.  The total area under 
the curve is independent of damping.   

For future use, we’ll write the above equation for the amplitude in terms of deviation ε  from the 
resonant frequency 0,ω  

 ( )
2

2 2 2
2 2

0

.
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m

ε λ
ω

+ =   

Damped Driven Nonlinear Oscillator: Qualitative Discussion 
We’ll take a damped, driven, nonlinear oscillator, one with a positive quartic potential term, as 
discussed above:  

 ( )2 3
02 / cos .x x x f m t xλ ω β+ + = Ω −   

First, a general discussion.  We know from the results above that as the amplitude of oscillations 
increases, so does the frequency.   As previously discussed, an increased oscillation amplitude 
encounters a potential becoming stronger and stronger than the simple harmonic oscillator.  

  

  

  

    



4 
 

So if we drive the oscillator from rest at the frequency that resonates with its small amplitude 

oscillations (where the 41
4 xβ potential term has negligible effect), as the amplitude builds up, the 

oscillator frequency increases, and the driving force falls out of sync.  

The way to keep the amplitude increasing is evidently to gradually increase the frequency of the driving 
force to match the natural frequency at the increased amplitude.  (Side note: this is the principle of the 
synchrocyclotron—except, in that case the frequency is lowered as the energy increases, because the 
particles go to bigger and bigger orbits as  their mases increase relativistically.)  This way a small external 
driving force (enough to overcome frictional damping) can maintain a large amplitude oscillation at a 
frequency well above the frequency 0ω of small oscillations. 

But what if we apply this high frequency to a 
system initially at rest, rather than gradually 
ramping up in sync with the oscillations? Then for 
a small driving force, we can treat the system as a 
damped simple harmonic oscillator, and this off-
resonance force will drive relatively small 
amplitude oscillations.  

The bottom line is that for the same external 
driving force, with frequency in some range above 

0ω , there are two possible steady state oscillation amplitudes, depending on the history of the system. 

Question: if it’s the same driving force, how do you account for the fact that the large oscillation clearly 
does more work against friction? 

Answer:  the work done by the driving force depends on the phase difference between the force and the 
motion.  It has to be different for the two cases.  

Nonlinear Case: Analysis 
The equation of motion is: 

 ( )2 3
02 / cos .x x x f m t xλ ω β+ + = Ω −   

We established earlier that the nonlinear term brings in an amplitude-dependent correction to the 
oscillator’s frequency:  

 
2

2
0 0

0

3
8

b bβω ω ω κ
ω

= + = +  

in Landau’s notation.  (Actually this b  is the same as our previous ,a  but that's because we've slightly 

simplified Landau's treatment, we use just an 3x anharmonicity term, he includes also an 2x  term.)  
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The equation for the amplitude in the linear case (from the previous section) was, with 0,ε ω= Ω −   

 ( )
2

2 2 2
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+ =  

For the nonlinear case, the maximum amplitude will clearly be at the true (amplitude dependent!) 

resonance frequency ( )bω  so with 0,ε ω= Ω − as before, we now have a cubic equation for 2b : 

( )( )
222 2 2

2 2
04

fb b
m

ε κ λ
ω

− + = . 

Note that for small enough ,f b  is small ( 2 2 2 2 2
max 0/ 4b f m ω λ≈ ) 

but the center of the peak has shifted slightly upwards, to 
2 ,bε κ=  that is, at a driving frequency 2

0 .bω κΩ = +  The cubic 

equation for 2b has only this one real solution. 

However, as the driving frequency is further increased, the 
coefficients of the cubic equation change and at a certain point two 
more real roots appear.  

The ,b ε curve for this larger driving force looks like:  

So what’s going on here?  For a range of frequencies, 
including the vertical dashed red line in the figure, there 
appear to be three possible amplitudes of steady 
oscillation at one frequency.  However, it turns out that 
the middle one is unstable, so will exponentially deviate, 
going to one of the other two, both of which are stable. 

If the oscillator is being driven at its natural frequency, 
then the driving frequency is gradually increased, it will follow the upper curve to the point C , then 
drop discontinuously to the lower curve.  Further frequency increase (with the same amplitude driving 
force, of course) will give diminishing amplitude of oscillation—just as happens for the ordinary simple 
harmonic oscillator on going away from the resonant frequency. 

If the frequency is now gradually lowered, the amplitude gradually will increase to point D , where it 
will jump discontinuously to the upper curve.  The overall response to driving frequency is sometimes 
called hysteresis, by analogy with the response of a magnetic material to a varying imposed external 
field.  
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Frequency Multiples 
The above analysis is for frequencies not very far from 0ω . But nonlinear terms can cause resonance to 

occur at frequencies which are rational multiples of 0ω .  Landau shows that a small 31
3 xα in the 

potential  (so an additional force 2xα in the equation of motion) can generate a resonance near 
1

02ωΩ = .  We’ve only considered a quartic addition to the potential, 41
4 xβ , a force 3xβ , we can show 

that gives a resonance near 1
03ωΩ = .  

We have ( )2 3
02 / cos .x x x f m t xλ ω β+ + = Ω −    We’ll write ( ) ( )0 1x x x= + +  

Let’s define ( )0x by 

 ( ) ( ) ( ) ( )0 0 02
02 / cosx x x f m tλ ω+ + = Ω   

So ( ) ( )0 cosx b t δ= Ω + .  Then 

 

( ) ( ) ( ) ( )( )
( )
( ) ( )

31 1 1 02
0

3 3

3 3 1
4 4

2

cos

cos cos 3

x x x x

b t

b t t

λ ω β

β δ

β δ δ

+ + = −

= − Ω +

= − Ω + + Ω +  

 

 

Then, for 1
03ωΩ = , the second term, ( ) ( )3 31 1

04 4cos 3 cosb t b tβ δ β ω δ− Ω + = − + , will have a 

resonant response, although it is proportional to the (small) amplitude cubed, so may not be dramatic.  

Similar arguments work for other fractional frequencies. 
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