
24. Moments of Inertia: Examples 
Michael Fowler 

Molecules 
The moment of inertia of the hydrogen molecule was historically important.  It’s trivial to find: the nuclei 
(protons) have 99.95% of the mass, so a classical picture of two point masses m a fixed distance a apart 

gives 21
2 .I ma=  In the nineteenth century,  the mystery was that equipartition of energy, which gave 

an excellent account of the specific heats of almost all gases, didn’t work for hydrogen—at low 
temperatures, apparently these diatomic molecules didn’t spin around, even though they constantly 
collided with each other.  The resolution was that the moment of inertia was so low that a lot of energy 
was needed to excite the first quantized angular momentum state, L =  . This was not the case for 

heavier diatomic gases, since the energy of the lowest angular momentum state 2 2/ 2 / 2 ,E L I I= =   
is lower for molecules with bigger moments of inertia .  

Here’s a simple planar molecule: 

Obviously, one principal axis is through the centroid, 
perpendicular to the plane.  We’ve also established that 
any axis of symmetry is a principal axis, so there are 
evidently three principal axes in the plane, one along 
each bond!  The only interpretation is that there is a 
degeneracy: there are two equal-value principal axes in 
the plane, and any two perpendicular axes will be fine. 
The moment of inertial about either of these axes will be 
one-half that about the perpendicular-to-the-plane axis. 

What about a symmetrical three dimensional molecule?  

Here we have four obvious principal axes: only possible if 
we have spherical degeneracy, meaning all three 
principal axes have the same moment of inertia.  

 

 

 

Various Shapes 

A thin rod, linear mass density λ , length  : 
/2

2 3 21
12

0

2 2 / 24 .I x dx mλ λ= = =∫


   

http://chemwiki.ucdavis.edu/Inorganic_Chemistry/Molecular_Geometry/Trigonal_Planar_______Molecular_Geometry
http://www.elmhurst.edu/%7Echm/vchembook/204tetrahedral.html
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A square of mass m , side  , about an axis in its plane, through the center, perpendicular to a side:
21

12 .m  (It’s just a row of rods.)  in fact, the moment is the same about any line in the plane through the 

center, from the symmetry, and the moment about a line perpendicular to the plane through the center 
is twice this—that formula will then give the moment of inertia of a cube, about any axis through its 
center. 

A disc of mass M , radius a  and surface density σ has 2 4 21 1
2 2

0

2 .
a

I r rdr a Maσ π π σ= ⋅ ⋅ = =∫  This is 

also correct for a cylinder (think of it as a stack of discs) about its axis.  

A disc about a line through its center in its plane must be 21
4 Ma from the perpendicular axis theorem. A 

solid cylinder about a line through its center perpendicular to its main axis can be regarded as a stack of 
discs, of radius a , height h , taking the mass of a disc as dzρ , and using the parallel axes theorem,  

 ( )
/2

2 2 2 21 1 1
4 4 12

0

2 .
h

I dz a z Ma Mhρ= + = +∫  

For a sphere, a stack of discs of varying radii, ( )22 2 5 281 2
2 15 5 .

a

a

I dz a z a Maρπ ρπ
−

= − = =∫  

 An ellipsoid of revolution and a sphere of the same mass and radius clearly 
have the same motion of inertial about their common axis (shown).  

 

Moments of Inertia of a Cone 
Following Landau, we take height h and base radius R and semivertical angleα
so that tanR h α= . 

As a preliminary, the volume of the cone is  

2
2 21

3
0 0

.
h h RzV r dz dz R h

h
π π π = = = 

 ∫ ∫  

The center of mass is distance a from the vertex, where 

2
2 2 2 31 1

3 4 4
0 0

, .
h h RzaV a R h zdV z dz R h a h

h
π π π = ⋅ = = = = 

 ∫ ∫  

 

 

 

 

 

 

 

 

 

 



3 
 

The moment of inertia about the axis 3x of the cone is (taking densityρ ) that of a stack of discs each 

having mass ( )
2

2 Rzm dz r dz dz
h

π ρ π ρ = =  
 

 and moment of inertia ( ) ( ) 21
2I dz m dz r= :  

4
4 231 1

2 10 10
0

.
h Rz dz R h MR

h
πρ πρ  = = 

 ∫  

The moment of inertia about the axis 1x′ through the vertex, perpendicular to the central axis, can be 

calculated using the stack-of-discs parallel axis approach, the discs having mass 
2Rz dz

h
πρ  

 
 

, it is 

 
2 2

2 4 2 3 2 23 31 1 1
4 20 5 20 5

0

.
h Rz Rz z dz R h R h MR Mh

h h
πρ πρ πρ

     + = + = +    
     

∫  

Analyzing Rolling Motion 

Kinetic Energy of a Cone Rolling on a Plane 
(This is from Landau.) 

The cone rolls without slipping on the 
horizontal XY plane.  The momentary line of 
contact with the plane is OA , at an angleθ  in 
the horizontal plane from  the X axis. 

The important point is that this line of contact, 
regarded as part of the rolling cone, is 
momentarily at rest when it’s in contact with 
the plane.  This means that, at that moment, 
the cone is rotating about the stationary line

.OA  Therefore, the angular velocity vector Ω


  

points along OA  .  

 Taking the cone to have semi-vertical angleα  (meaning this is the angle between OA  and the central 
axis of the cone) the center of mass, which is a distance a  from the vertex, and on the central line, 
moves along a circle at height sina α  above the plane, this circle being centered on the Z  axis, and 

having radius cosa α .  The center of mass moves at velocity cosV aθ α=  , so contributes translational 

kinetic energy 2 2 2 21 1
2 2 cosMV M aθ α=   .   

 

 

 

 
 

 
 

 

 



4 
 

Now visualize the rolling cone turning around the momentarily fixed line OA :  the center of mass, at 

height sina α , moves at V , so the angular velocity  cot .
sin
V

a
θ α

α
Ω = =     

Now define a new set of axes with originO : one, 3x , is the cone’s own center line, another, 2x , is 

perpendicular to that and to OA , this determines 1x .   (For these last two, since they’re through the 

vertex, the moment of inertia is the one worked out in the previous section.) 

Since Ω


 is along OA , its components with respect to these axes ( )1 2 3, ,x x x  are ( )sin , 0, cosα αΩ Ω

. 

The total kinetic energy is 

( )

4
2 2 2 2 2 21 1 1

1 32 2 2 2

2 2 2

coscos cos
sin

3 1 5cos / 40,

T M a I I

Mh

αθ α θ α θ
α

θ α

= + +

= +

  



 

using 2 2 23 3 3 3
1 320 5 10 4, , , tan .I MR Mh I MR a h R h α= + = = =   

Rolling Without Slipping: Two Views 
Think of a hoop, mass M radius R , rolling along a flat plane at speed V .  It has translational kinetic 

energy 21
2 ,MV  angular velocity / ,V RΩ = and moment of inertia 2I MR= so its angular kinetic 

energy 2 21 1
2 2I MVΩ = , and its total kinetic energy is 2MV . 

But we could also have thought of it as rotating about the point of contact—remember, that point of the 
hoop is momentarily at rest.  The angular velocity would again be Ω , but now with moment of inertia, 

from the parallel axes theorem, 2 2 22I MR MR MR= + = , giving same total kinetic energy, but now all 
rotational . 
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Cylinder Rolling Inside another Cylinder 
Now consider a solid cylinder radius a rolling inside a hollow cylinder radius R , angular distance from 

the lowest pointθ , the solid cylinder axis moving at 

( )V R a θ= −  , and therefore having angular velocity 

(compute about the point of contact) / .V aΩ =     

The kinetic energy is 

( ) ( )2 22 21 1 1
2 2 2 2/ IMV I V a M R a

a
θ + = + − 

 
  

The potential energy is ( )cosMg R a θ− −  

The Lagrangian L T V= − , the equation of motion is

( ) ( ) ( )2
2 sin ,IM R a Mg R a Mg R a

a
θ θ θ + − = − − ≅ − − 

 
  

so small oscillations are at frequency 
( )21

g
I R a

Ma

ω =
 + − 
 

.  
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