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 If a fluid is flowing steadily at v meters/sec, the volume through an 
area dA perpendicular to the flow is  vdA m3/sec. 
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 If the fluid is flowing through a small area dA having its normal at an angle 
θ  to the direction of flow, the effective area seen by the flow is cosdA θ , 

the volume through the area is cosvdA v dAθ = ⋅
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Physics 2415 Lecture 4:  Gauss’ Law 
Michael Fowler, UVa. 

Electric Flux:  a Watery Analogy 
The main concept in Gauss’ Law is electric flux.  What does this mean?  The word flux just means flow, 
for example an influx of people into a room means they’re coming in.  Before talking about electric flux, 
let’s look at something easier to visualize:  flow of water.  

We’ll begin by considering flow down a river.  Suppose we stretch a net across the river, a fisherman’s 
net with thin strings and approximately square small holes, so that all the water flowing down the river 
goes through the net.  For a steadily flowing river, the total flow through the net, in, say, cubic meters of 
water per second, doesn’t depend on whether the net is stretched flat across the river, or is curved by 
the current so that it bulges in a downstream direction—in either case, the total flow is all the water in 
the river.   (I’m assuming here that the strings themselves are thin enough not to affect the flow 
measurably.)  

One way to find the 
total flow is to add 
the flows through 
all the little 
squares.  We’ll 
assume the 
squares are small 
enough that the 
fluid velocity 
doesn’t vary 
significantly over 
one square: first, 
assume the little 
square is 
perpendicular to 
the direction of 
flow:  if the square 
has area dA square 
meters (it’s small), 
and the fluid is 
flowing at speed v 

meters per second, then in one second a volume vdA cubic meters of fluid will flow through the square.   
But what if the square is not perpendicular to the flow?  Then what counts is the effective area the flow 
sees—if the normal to the square is at an angle θ to the flow, this effective area is cosdA θ .  

http://galileoandeinstein.phys.virginia.edu/2415/home.html
http://galileoandeinstein.phys.virginia.edu/2415/home.html
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 The standard notation is to represent the area by a vector dA


 of magnitude ,dA  and direction 
perpendicular to the area, that is, along the normal.  (The sign is of course ambiguous—we have to 
decide which way it’s pointing on a case by case basis.) 

Then the flow across the small area dA


 is  v dA⋅




 (we have now chosen the vector dA


 to point 
downstream), and the total river flow F through all the holes in the net is 

 .F v dA= ⋅∫




 

It is important to realize that this total flow cannot depend on the detailed shape of the net:  it must be 
the same for all nets that completely span the river, so that all the river water passes through the net. 

Flow from a Point Source 
To take a slightly different example, consider filling a large deep swimming pool using a hose, the end of 
the hose being deep in the water.  We’ll assume there are no currents present except the water flowing 
out of the end of the hose, and that this outflowing water goes out equally in all directions: this could be 
achieved, for example, by covering the end of the hose with a porous ball, so the water flows directly 
outwards from this ball (we’ll ignore the obstruction presented by the incoming hose itself—suppose it’s 
really thin).   

Imagine now surrounding the source with a fishnet bag, a complete surface surrounding it, so all the 
water coming out the source goes through some hole in this fishnet.  It’s easy to see that if the hose is 
delivering F cubic meters per second, this will also be the total flow through the fishnet in a steady 
situation—water is not going to pile up inside the bag, it’s incompressible for all practical purposes.  

That is,  

F v dA= ⋅∫




 

and this integral is the same for any closed surface surrounding the source.   

At this point, we’ll abandon the fishnet picture, and talk a little more abstractly about integrating over a 

surface surrounding the source, with the increment of area denoted by  dA


 pointing outwards.  

In particular, let’s take a spherical surface of radius r surrounding the source.  Since we’ve said the 

water is flowing out symmetrically in all directions, it will have the same speed ( )v r  at all points on this 

centered spherical surface, and the flow vector will be parallel to the normal to the surface, so the total 
flow 

24 .F v dA vdA v dA r vπ= ⋅ = = =∫ ∫ ∫




 

Therefore, 
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 ( ) 2 ˆ.
4

Fv r r
rπ

=
 

 

Notice this is formally identical to the electric field from a point source: 

 ( ) 2
0

ˆ.
4

QE r r
rπε

=




 

 

This is why historically people talked about “electric flux”:  the electric field vector from a point charge 
looks exactly like the fluid velocity vector for an incompressible fluid flowing symmetrically outwards 
from a small spherical source.    

Specifically, the electric flux through a small area is defined in exact analogy with the flow of fluid 

through an area, it is just E dA⋅




, and the total electric flux through a closed surface with a single charge 
inside it is given by 

E


 v  

charge source 

For water flowing equally outwards in all directions from an underwater source, 
the vectors v denoting water velocity at each point in space form a pattern 

identical to that of the electric field vectors E


 from a point charge. 

Note:  Remember also this picture is a 2D representation of a 3D reality! 



4 
 

 0/ .E dA Q ε⋅ =∫




 

We know the integral doesn’t depend on which enclosing surface we choose, because the electric field 
vector is everywhere proportional to our water flow vector.  We know the constant is 0/Q ε because 

that’s what we get if we take a spherical surface, with the charge at the center: 

 2 2
0 0 0

1 1ˆ .
4 4

Q Q QE dA r dA dA
r rπε πε ε

⋅ = ⋅ = =∫ ∫ ∫
 



 

(The outward pointing unit vector r̂ is parallel to the outward pointing little area vector dA


.) 

We should mention that for a negative charge, the field lines of course point inwards: the fluid analogy 
is sucking the water out of the pool, a drain point.  

What if we have a closed surface that doesn’t include our point charge?  What is E dA⋅∫




 in that case?  

The answer should be obvious from the flowing water analogy:  if there is no source of water inside the 
surface, the water flowing in must balance the water flowing out in the steady state.  That is to say, if 

there is no charge inside a surface in an electrostatic problem, then 0.E dA⋅ =∫




 

Gauss’ Law for General Charge Distributions: Use Superposition! 
We’ve given a detailed account of the value of E dA⋅∫




 over a closed surface for the field from a single 

charge, it’s equal to 0/Q ε  if the charge is inside the surface, zero otherwise.  

But it’s easy to generalize, because any charge distribution can be represented as a (possibly large) 
number of point charges, and the total electric field is the linear sum of all the electric fields from these 
many point charges: 

 ( ) ( ) ( ) ( ) ( )1 2 3 4E r E r E r E r E r= + + + +
    

    

  

and therefore for a closed surface 

1 2 3 4E dA E dA E dA E dA E dA⋅ = ⋅ + ⋅ + ⋅ + ⋅ +∫ ∫ ∫ ∫ ∫
    

    

  

The first integral in the series will equal 1 0/Q ε  if the charge 1Q  is inside the closed surface, zero 

otherwise.  The same is true for all the terms in the series, so we conclude: 

 ( ) 0
closed surface

total charge inside surface /E dA ε⋅ =∫




 

and this is Gauss’ Theorem. 
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