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Physics 2415  Lecture 8:  Capacitance 
Michael Fowler, UVa. 

Introduction: Charging a Sphere; Definition of Capacitance 
A capacitor is a device for holding electrical charge.  Of course, any electrically isolated macroscopic 
object can hold some charge, but the term capacitor is only used for conductors, so the whole object is 
raised to the same potential when the charge is added.  

Perhaps the simplest example of a capacitor is a conducting sphere of radius .R   As we found earlier, a 
charge Q  on the sphere generates an electrical field outside the sphere of magnitude 

( )( )2
01/ 4 /E Q rπε= , so the potential at the surface of the sphere ( )01/ 4 / /V Q R Q Cπε= =  with 

 04 .C Rπε=  

That is, the charge Q  of the sphere is linearly proportional to the voltage ,V  and the coefficient 

/Q V C=  is termed the capacitance. 

In our system of units, the charge is measured in coulombs, and the capacitance which is raised in 
potential by one volt if one coulomb of charge is added is called a one farad capacitor, in honor of 

Michael Faraday.  This is a pretty big sphere: recall 9
01/ 4 9 10πε = × , so if 04 1,C Rπε= = we have 

99 10 m,R = × more than ten times the radius of the Sun! 

If we need to store significant quantities of charge, spheres are not the best way to go (although a 
sphere is used in the van der Graaff machine).   

Parallel Plates 
Far more common are capacitors made of parallel plates of conductors:  in the simplest case, two flat 
plates of area A  are placed parallel a distance d apart, where d  is much smaller than the linear size of 
the plates.  This configuration was discussed in detail in lecture 5, so we’ll just take the results from 
there.  We take it that d  is sufficiently small that the field between the plates is uniform, and the field 
outside the plates from the charge on the plates is negligible.  

When connected to a battery, one plate to the positive and one to the negative terminal, charge flows 
on to the plates in equal (but of course opposite sign) amounts: if charge Q  flows to the positive plate, 

it has charge density /Q Aσ = , giving a uniform electric field outwards from each side 

0 0/ 2 / 2 .E Q Aσ ε ε= =   This is the field from the positive sheet only, the field between the sheets has 

an equal contribution from the negative sheet, so  

 0/ .E Q Aε=  
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Typical electric field configuration in a coaxial cable, 
usually a copper cylinder and a central copper wire.  
The charge is on the outside surface of the inner 
conductor, the inside surface of the outer conductor. 

The voltage difference between the plates is then 

 0/ .V Ed Qd Aε= =  

It follows immediately from the definition of capacitance, / ,V Q C=  that 

 0 /C A dε=  

for the parallel plate capacitor. 

Capacitance of a Coaxial Cable 
Recall from lecture 5 (where this diagram appears) the field configuration in a coaxial cable: the electric 

field strength between the inner solid 
copper wire and the outer encasing 
copper cylinder is given by 

( ) 0/ 2 ,E r rλ π ε= from Gauss’ Law, 

where λ is the charge per meter on the 
wire (and the cylinder, of course).   The 
voltage difference between the two 
cylinders is therefore, from a simple 
integration

( ) ( ) ( )
2

1

0 2 1/ 2 ln /
r

r

V E r dr r rλ πε= =∫  

so the capacitance of a length  is 

( ) ( )
( )

0 2 1

0 2 1

/ / 2 ln /

2 / ln / .

C Q V r r

r r

λ πε

πε

= =

=





      

As we shall see later, this is important in 
analyzing the transmission of 

electromagnetic waves in coaxial cables—and that’s the way the signal gets to your TV. 

Capacitors Big and Small 
With parallel plates, we don’t need a capacitor bigger than the Sun to get one farad.  But it still has to be 
pretty big, if we keep the gap between plates an easily visible size, say 0.1mm.   The reason is that 0ε is 

so small (8.85x10-12).  The area has to be of order square kilometers!  Traditional commercial capacitors 
lessen the gap by having plates separated by a thin layer of insulator (which is also a dielectric—see 
later) and roll up the plates into a many layered roll.  Still, it’s difficult to get much above millifarads this 
way in a compact capacitor.  A real breakthrough came some years ago with the realization that 
aluminum oxidizes almost immediately on exposure to air, that the oxide layer that forms is about a 
micron (10-6 meters) thick, and is a good insulator. Capacitors were then made by putting conducting 
paste on to oxidized aluminum.  The paste was one plate, the aluminum metal the other.  More 
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recently, capacitors have been manufactured with a layer of insulator a few atoms thick. This is another 
factor of 1,000 down in thickness.  At the same time, the area has been vastly increased by using 
activated carbon, a solid which is actually many tiny granules pressed close, but with most of their 
surface still exposed, to give hundreds of square meters of surface in an ordinary size jar (your lungs 
have a similar structure—and comparable surface area, necessary to absorb oxygen at the required 
rate).   The only drawback is that the insulating layer cannot resist more than three volts or so, this being 
the typical voltage to excite an atom.  However, these new capacitors are measured in kilofarads, and 
will soon be competitive with conventional batteries in hybrid cars.  One advantage over batteries is the 
rapidity with which capacitors can absorb and deliver power. 

At the other end of the scale, dynamic rapid access memory (DRAM) in computers stores information in 
millions of capacitors of microscopic size, arranges in rows and columns on a chip.  These are measured 
in femtofarads (10-15 farads).  So capacitors are currently being manufactured over a range of sizes 1018! 

Combining Capacitors in Circuits: Series and Parallel 

 

Two capacitors that appear one after the other in a circuit, as shown above, are said to be in series.  
They can be replaced by a single capacitor which will behave identically, meaning if the two were in a 
black box with just the wires coming out the side, by testing with various voltages and noting the charge 
flowing in, you wouldn’t be able to tell.  But, given 1 2,C C  what is the value of the equivalent capacitor 

C ?  The key is to note that if the 1 2C C+  combination is subject to the same external voltage as the 

single ,C  the same charge must flow in—otherwise, the C  wouldn’t be equivalent.  Also, equally 

important, in the combination the Q ’s on the two capacitors must be the same, since the Q  from the 

battery on 1C will draw Q−  from 2C  as shown.   

C C1 

Two capacitors 1 2,C C  in series and the equivalent single capacitor .C   The 

charges on 1 2,C C  must be the same, since the charge on the plate of 1C  not 

connected to the battery must come from 2.C  Since the single capacitor C  

behaves identically, for given V  it also draws charge .Q  

V 

Q 
Q Q 

-Q 
-Q -Q 
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Now consider the total voltage drop on going around the circuits.  For ,C   it’s / .V Q C=  For 1 2 ,C C+  

there is voltage drop across each capacitor, so the total 1 2/ / .V Q C Q C= +   These voltage drops for 

the two circuits are equal, so for capacitances in series, 

 1 2

1 2

1 2

1 1 1 ,

   (series).

C C C
C CC

C C

= +

=
+

 

For capacitances in parallel, at given voltage ,V  the total charge drawn from the battery by the two 

capacitors, 1 2Q Q+  must equal the charge Q  drawn by the single equivalent capacitor, from which  

 

 
1 2

1 2

,

  (parallel).

Q QQC
V V V

C C C

= = +

= +
 

Simple Picture of Adding Two Capacitors 
Suppose we take two capacitors which are physically parallel metal plates: the capacitances are 

1 0 1 1 2 0 2 2/ , /C A d C A dε ε= = .   First, take two for which 1 2.d d=   Place them side by side, and connect 

the two top plates, then the two bottom plates: put them in parallel.  Obviously, the combined capacitor 
C  has the same 1 2 ,d d d= =  and 1 2 ,A A A= +  so 1 2.C C C= +   Next, take two having 1 2A A=  and 

put them in series:  For the combined ,C  1 2 ,A A A= =  1 2 ,d d d= +  the result follows. 

C1 

Two capacitors 1 2,C C  in parallel and the equivalent single capacitor .C   The 

voltages across 1 2, ,C C C are all .V    Since the single capacitor C  and the 

parallel pair 1 2,C C behave identically, the total charge 1 2Q Q+  drawn from the 

battery must equal .Q  
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Q2 Q1 
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