
Physics 2415 Lecture 12: DC Circuits I 
Michael Fowler UVa 

Introduction: Electromotive Force and Terminal Voltage 
In this lecture, we’ll analyze current flow in a network of resistances and include the possibility of 
batteries in some branches. We only address steady current flow, so do not include capacitances or 
inductances—these will be dealt with a little later. Beginning with the simplest case of a single battery, 
the potential difference that drives current originates in the chemical reactions inside the battery, at the 
surface of contact of the electrolyte and the terminals, called the anode and cathode. The two chemical 
reactions (releasing an electron at the anode to go around the circuit to combine chemically at the 
cathode) add to give a driving potential called the electromotive force, denoted by . This drives the 
current around the circuit but also through the battery itself, which has its own resistance, usually 
denoted by .r  Thus the potential delivered outside, called the terminal voltage and denoted by ,V is 
given by  

 .V Ir= −  

Often r is small enough for this correction to be ignored.  

Remark: don’t worry too much about the names anode and cathode. Check the Wikipedia article. For one thing, 
the names are switched on recharging. Also, in vacuum tubes the heated element is always called the cathode. Just 
concentrate on how the electrons/ions are moving.  

Resistances in Series and Parallel 
Applying Ohm’s Law ,V IR= the same current passes 
through all three resistances, so there are successive voltage 
drops 1 2 3, ,IR IR IR for a total voltage drop  

1 2 3V IR IR IR IR= + + =  

where 1 2 3.R R R R= + +  Resistances in series just add. 

 

   

https://en.wikipedia.org/wiki/Electric_battery
https://en.wikipedia.org/wiki/Anode


Parallel resistances all have the same voltage drop, the total 
resistance (see figure) is given by  

 
1 2 3

1 1 1 1 .
R R R R
= + +  

This is more obvious thinking in terms of the conductance (the 
inverse of the resistance): conductances just add, like parallel 
pipes conveying water. 

 

 
 
More General Networks: Kirchhoff’s Laws 
We first consider a network of connected elements, as in this 

diagram, the individual elements can be resistances or batteries. (We’ll add capacitances and 

inductances later.)   

To analyze such a network, we label each element with its resistance ,iR the current iI and the emf of 

any battery in that element .i  Then we use Kirchhoff’s laws. 

Kirchhoff Law #1: Junction Rule.  At any connection point between elements, the total ingoing current 
must be zero. 

In other words, charge cannot be piling up—the junction has no capacitance.  

We have already applied this rule in the above diagram to reduce the number of unknown currents from 
five to two.  The currents must be labeled with a value jI  and an arrow indicating direction.  

  

  

   

 

 

 

 

 

  

 

 

 

 



Kirchhoff Law #2: Loop Rule. The potential drop across an element is .j jI R  (plus possible battery term). 

The total potential change on going round a closed loop back to the same point must be zero. The 
electric field is conservative, so 

 
loop

0.j jI R =∑  

If you take a walk on a hillside and finish at the same spot you began from, your total change in 
gravitational potential is zero. This is the same thing.  

General Strategy for Solving Resistance Networks: 

First, notice if there are resistances in series that can just be added, or in parallel that can be combined. 
(There may not be any.) 

Second, label the current through each resistance, taking full advantage of the junction rule to minimize 
the number of unknowns. 

Third, apply the loop rule to generate a number of equations equal to the number of unknown currents.  

Solve these simultaneous linear equations to find the currents. You can then use Ohm’s law to find the 
voltage drop for any resistance.  

An Example:  Compute the resistance acR  of this 

network from a  to c given that all lines are one 
ohm resistors except ,dc which has resistance .r  

In drawing the diagram, we’ve already applied the 
Junction Law at ,b d to avoid introducing yet more 
unknown currents.  This should always be done.  

The total current flowing from a to c is 

1 2 3.I I I I= + +  

 

Call the resistance of the network from a to c  ,acR  then 1,ac acV IR I= = the last being the voltage drop 

across the one ohm resistor .ac  

So 1 / .acR I I=  

Now we add to zero the voltage changes on going around loops, using V IR= for each element, with 
1R = except for dc where .R r=  

We have four unknown currents, but already have one equation above, given the external current ,I  so 
we need three loop equations. Here they are: 

Loop 2 3 4: .abd I I I= +    Loop 1 2 4: 2 .abc I I I= +   Loop ( )1 3 4: 1 .acd I r I rI= + −  

 

 

 

 

 

 

 

 

 

 



From the first two, ( )1 3 4 3 42 3 1 ,I I I r I rI= + = + −  so ( ) ( )3 41 3 .r I r I− = +  

It is now straightforward to express all currents as multiples of 4I  (do it!) to find  

 
( )

1

1 2 3

3 5 .
8 1ac

I rR
I I I r

+
= =

+ + +
 

Exercise: Consider the three special cases 0,1, .r = ∞  See if you can find an easy way to find acR  for 

each of these three cases, without going through all the work above.  
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