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Physics 2415 Lecture 23:  LR, LC and LRC Circuits 
Michael Fowler, UVa, 10/25/09 

LR Circuits 

A battery is connected to L, R in series:   0 .dIV IR L
dt

= +  

(Quick sign check: on first connecting the battery, L will oppose the 

current increasing from zero—so for positive /dI dt , the inductance is 
working against the battery.) 

The math here is very similar to the capacitor: 

0

dI dt
V IR L

=
−

 

The integration is routine,  and ( )/0 1 tVI e
R

τ−= −
 
with / .L Rτ =  

LC Circuits: Oscillations 
We first assume there’s zero resistance, just C and L in series, with an 
open switch.  We charge C, then close the switch.  Charge will begin to 
flow through the inductance from one plate of C to the other. The 
current  /I dQ dt= −   will build up, but its rate of increase will 

depend on the inductance, the back emf /LdI dt balancing the 
voltage /Q C of the capacitor.  

That is,   
2

2

Q dI d QL L
C dt dt
= = −

       
or         

2

2 .d Q QL
dt C

= −  

Now compare this charge equation with the equation for displacement of a mass on a spring:  suppose 
the mass can slide on a smooth table, the spring being attached to a wall.   The equation is: 

 
2

2 .d xm kx
dt

= −  

Here m is the mass, k the spring constant, and x the linear displacement from the spring’s relaxed length 
position.  It’s clear that these two equations are mathematically identical!    

It’s worth seeing what corresponds to 
what.  The inductance L corresponds 
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to the mass m.  These are both “inertial” terms:  once the mass is moving, its mass or inertia keeps it 
going, so if it’s pulled to one side then let go, the spring pulls it back, accelerating it, but even when the 
spring is back to its natural length the mass keeps moving and takes the mass the same distance the 
other way before stopping.  For the LC circuit, the current is analogous to the velocity of the mass, and 
the inductance opposes change in current just as mass opposes change in velocity: when the initially 
charged capacitor has completely discharged, the inductance keeps the current going until the capacitor 
has its initial charge reversed.  

We can see from the equations that the spring constant k corresponds to the inverse of the capacitance, 
1/C,  so a bigger capacitance is like a softer spring.  A larger capacitance can absorb charge more easily, 
just as a softer spring can be more easily stretched.   

For the mass on the spring on a frictionless surface, pulled aside by 0x  and let go, 0 cosx x tω= , here 

/k mω = . 

Similarly, if at 0t = there is zero current and charge 0Q on the capacitor, 0 cosQ Q tω= , where 

1/ .LCω =  

The trading of potential energy stored in the spring and kinetic energy in the moving mass, with overall 
energy conserved at all times, is mirrored here in the trading of electric field energy in the capacitor and 
magnetic field energy in the inductance.   

To check conservation of energy here, note that 0 cosQ Q tω= means that 0/ sinI dQ dt Q tω ω= − = , 

and total energy 
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= + = + =  

using 2 1/ .LCω =  

It’s also worth mentioning here that this L, C circuit can 
be very simple: for example, a ring with a gap: 

The two balls are the capacitor: begin with one of them 
positive, the other equally negative.  The ring is of course 

an inductor: a current going around it creates a magnetic 
field.   

Initially, then, we have an electric dipole, with the 
corresponding field.  But this is an oscillating field.  The 
magnetic field from the current also oscillates, and we 
know that creates another electric field.  The picture is 
not yet complete—there is one crucial element 
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missing—but we can begin to see how an oscillating circuit might emit electromagnetic waves.   

LRC Circuit 
How does this picture change if we include resistance?  Obviously, the same way, essentially, the 
oscillating mass on a spring changes if we include air or fluid resistance: the oscillations are damped.  

More formally, we must add a term IR to the voltage sum: 

 
2

2 0d Q dQ QL R
dt dt C

+ + =  

This equation for Q is identical to the equation of motion for x for a 
damped mass on a spring:  imagine a mass in molasses.   L is the 
mass, 1/C is the spring constant k and R is the damping term b:  see 
that earlier work.   

This means that the behavior of Q as a function of time is exactly the 
same as the behavior of x in the damped oscillator. In particular, 
there are two different regimes: lightly damped, where the sign of 
charge on the capacitor oscillates back and forth, gradually dying 
away, and heavily damped, where the charge slowly drains through 

the system, decreasing exponentially, with no oscillation.  The boundary between the two is critical 

damping, and occurs when the damping term 2 4 /R L C= . 

It also follows from the exact analogy with the damped mechanical oscillator that introducing damping 
(resistance) lowers the frequency of the oscillations, but for small damping this is a very small effect.  

However, as the damping approaches the critical value 2 4 /R L C= , the frequency goes to zero. 
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