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Physics 2415 Lecture 25: Waves 
Michael Fowler, UVa, 10/28/09 

Dimensions 
As a preliminary to studying waves, we’ll discuss a useful trick for finding how a simple system’s 
behavior depends on some parameter: dimensional analysis.   

In mechanics, the basic units are units of length, time and mass. We denote these by L, T, and M.  (It’s 
unfortunate that we measure length in meters, m, so there is some potential for confusion there, but 
this is the standard notation.) 

We denote the dimensionality of a quantity by putting it in square brackets.  For example, velocity is 
distance/time, so write its dimension as  [v] = LT-1, and acceleration [a] = LT-2.  From F = ma, [F] = MLT-2: 
both sides of an equation must match, dimensionally, for the equation to make sense.  In fact, checking 
the dimensions of all terms in an equation can be very effective in finding if some term has been 
omitted, 

Dimensional analysis can yield important physical information about a system without going through a 
full analysis.  For example: experimentally, the time of swing of a simple pendulum varies with its length, 
but not with its mass.  It obviously also depends on g (if there’s no gravity, it won’t swing).  Without 
further experiment, can we find just how the time of a swing depends on length?   

The answer is yes—by a simple dimensional argument.  We know the time of one swing, which 

obviously has dimension T, can depend only on the length  , of dimension L, and g, an acceleration, so 
having dimension LT-2.   To find a combination that is purely time, I need to divide out the L dependence.   

We see that  [  /g] = T2, so / g has dimension T: this must be the relevant factor in the equation for 

the period.  In fact, the period is 2 / gπ  :  dimensional analysis cannot tell us the constant multiplier, 

since it’s dimensionless,  but it does give us important physical information, such as how the period will 
change if we double the pendulum’s length.  And, we found that with very little work. 

We’ll be using dimensional analysis below to find dependence of wave velocities on medium 
parameters. 

Types of Waves: Transverse and Longitudinal   

Transverse:  Waves on a String 
The basic transverse wave is a wave on a string, including a  pulse-type wave generated by flicking one 
end of a taut string up and down quickly.  Experimentally, it’s found that the resulting pulse travels 
down the string retaining its original shape, apart from frictional losses.   

http://galileoandeinstein.physics.virginia.edu/2415/home.pdf�


2 
 

The way to describe a wave on a string mathematically is to give the transverse displacement as a 
function of position along the string.  So, let’s assume that the string at rest is stretched along the x-axis 
(we’re ignoring gravity for now), and when a pulse is generated, at t = 0 the string’s position is given in 
the (x,y) plane by a formula 

 ( ) , 0.y f x t= =  

At a subsequent time t, the pulse has moved a distance vt to the right, but has the same shape, so is 
described by the same function f, but now with the function’s origin shifted by vt. 

So the wave form as a function of x and t is: 

 ( ).y f x vt= −  

 

For a pulse moving along the string to the left, the functional form would be ( )y g x vt= − . 

If two such pulses meet, it is found that provided all displacements are fairly small, the displacements 
simply add—the string has time-varying shape 

 ( ) ( ) ( ), .y x t f x vt g x vt= − + +  

You can explore the sometimes surprising way pulses interact using the spreadsheet here.  

Longitudinal:  Sound Waves in a Tube 
In a longitudinal wave, the particles of the medium (or small volumes of gases, etc.) oscillate back and 
forth as the wave passes through, but, unlike the string, in a sound wave in air, for example, the 
oscillating motion is along the direction of propagation of the wave.   

This is well illustrated by this flash animation of the waves.   Toggling the blue line reveals that any part 
of the air in the tube simply oscillates back and forth as the wave passes through, even though the wave 
is clearly moving to the right. 
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A transverse pulse traveling down a string: the form at t = 0 
and at later time t.  The function f, the shape, is unaltered. 

y = f(x – vt) 
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Wave Velocity: What Dimensional Analysis Tells Us 
The velocity of a wave can be derived from the wave equation (see later).  We won’t reproduce the 
derivation here, we’ll see what dimensional analysis can do. 

First, consider a wave on a string. The relevant parameters are the tension force, called FT by Giancoli, 
and the density per unit length, μ kg/meter.   

Now [FT] =MLT-2  (it’s a force) and [μ] = ML-1.  We need to find a combination of these two that has 
dimensions of velocity, LT-1.  This means we must get rid of the M: the obvious way is to take FT/μ, with 

dimension L2T-2.  That’s a velocity squared, so v is proportional to /TF µ .  In fact, it turns out to be 

equal to that. 

For longitudinal waves in a gas, or a fluid, the relevant parameters are pressure, which is force per unit 
area, [P] = MLT-2L-2 = ML-1T-2, and density, now per unit volume,[ρ] = ML-3.  Dividing one by the other 

gives v proportional to /P ρ .  This time the dimensional analysis doesn’t give the exact result, which 

is / /v dP d Bρ ρ= =  where B is the bulk modulus, /B dP dρ ρ= .  The dimensional analysis gets 

the constant wrong, but gets the dependence on pressure and density right.   

Notice that for an ideal gas, where PV =nRT, writing the density ρ as n/V moles/m3,  P/ρ = RT, so the 

speed of sound is directly proportional to T , but doesn’t depend on the density of the gas!  The point 

is that the molecules themselves have speed proportional to T , and they’re transmitting the sound 
wave.  

A Harmonic Wave: Energy Density and Power 

Harmonic Wave Energy Density 
A harmonic wave is a pure musical note, produced by an oscillating string or reed—one with no 
harmonics.   

It’s a sine wave, so at t = 0, say, it’s  

 ( ) 2sin xf x A π
λ

=  

This is standard notation: λ is wavelength: as x increases by λ , the sine goes through a complete cycle, 

one wave of the wave.  More commonly, the function is written in the neater form sinA kx , k is called 
the wave number.  

The traveling wave, taking it to be moving to the right, is then ( )sinA k x vt− , usually written 

( ) ( ), sinf x t A kx tω= −
 

where ω is the angular frequency.   
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This expression is the displacement from  the straight line resting position, so the velocity of a bit of 

string at x, t is in this transverse direction, and equals ( ) ( ) ( ),
, cosy

f x t
v x t A kx t

t
ω ω

∂
= = −

∂
.   

Therefore, the kinetic energy per meter of string from this transverse motion is  

( )2 2 2 2 2 21 1 1
2 2 4KE / meter cos .v A kx t Aρ ρ ω ω ρ ω= = − =  

Now, each particle of string is oscillating as in a simple harmonic oscillator, so we argue that, like the 
oscillator, on average its KE is ½ its total energy.  This gives 

the total energy per meter of string = 2 21
2 Aρ ω . 

 (A more convincing proof can be given by computing the potential energy as well as the kinetic energy:  
the potential energy is there because the string is longer as the wave passes through, and it took work 
against the tension to stretch it.) 

Power in a Harmonic Wave 
For a wave moving to the right at speed v, the power is v times the energy per unit length, 

2 21
2P v Aρ ω= .   

For example,  if the traveling wave moves at 20 meters per second, and its energy is being totally 
absorbed as it reaches the end of the string, then each second the energy content of 20 meters of string 
is absorbed at the end. 
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