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Michael Fowler 

Some Examples 
Similar triangles are just scaled up (or down) versions of each other, meaning they have the same 
angles.  Scaling means the same thing in a mechanical system: if a planet can go around the sun in a 
given elliptical orbit, another planet can go in a scaled up version of that ellipse (the sun remaining at 
the focus).  But it will take longer: so we can’t just scale the spatial dimensions, to get the same equation 
of motion we must scale time as well, and not in general by the same factor.  

In fact, we can establish the relative scaling of space and time in this instance with very simple 
dimensional analysis. We know the planet’s radial acceleration goes as the inverse square of the 
distance, so (radial acceleration)x(distance)2 = constant, the dimensionality of this expression is 

2 2 3 2LT L L T− −= , so 2 3T L∝ , the square of the time of one orbit is proportional to the cube of the size 
of the orbit.  A little more explicitly, the acceleration 2

Sun / ,GM r∝  so for the same Sun ,GM  if we 

double the orbit size, the equation will be the same but with orbital time up by 2 2.   

Galileo established that real mechanical systems, such as a person, are not scale invariant. A giant ten 
times the linear dimensions of a human would break his hip on the first step.  The point is that the 
weight would be up by a factor of 1,000, the bone strength, going as cross sectional area, only by 100.  

Mechanical similarity is important is constructing small models of large systems.  A particularly 
important application is to fluid flow, for example in assessing fluid drag forces on a moving ship, plane 
or car. There are two different types of fluid drag: viscous frictional drag, and inertial drag, the latter  
caused by the body having to deflect the medium as it moves through.  The patterns of flow depend on 
the relative importance of these two drag forces, this dimensionless ratio, inertial/viscous, is called the 
Reynolds number. To give meaningful results, airflow speeds around models must be adjusted to give 
the model the same Reynolds number as the real system.  

Lagrangian Treatment 
(Here we follow Landau.)  Since the equations of motion are generated by minimizing the action, which 
is an integral of the Lagrangian along a trajectory, the motion won’t be affected if the Lagrangian is 
multiplied by a constant.  If the potential energy is a homogeneous function of the coordinates, rescaling 
would multiply it by a constant factor. If our system consists of particles interacting via such a potential 
energy, it will be possible to rescale time so that, rescaling both space and time, the Lagrangian is 
multiplied by an overall constant, so the equations of motion will look the same. 

Specifically, if the potential energyU is homogeneous of degree k , and the spatial coordinates are 
scaled by a factor ,α  
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To get the kinetic energy term to scale by the same factor, we take t tβ→ , so ( )/ ,v vα β→
 

the 

kinetic energy is scaled by ( )2/ ,α β for this to match the potential energy scaling, we must have  

( ) 1
2

2 1/ , .kkα β α β α −= =
 

For planetary orbits, 1k = − , so 2 3,β α= confirming our hand waving derivation above. 

For the simple harmonic oscillator, ( ) 2U r r∝
 

 so 2k =  and 0.β =  What does that mean?  Scaling up 

the orbit does not affect the time—the oscillation time is always the same.  

Falling under gravity:  21, , .k x tβ α= = ∝  So doubling the time scale requires quadrupling the 
length scale to get the scaled motion identical to the original.  

The Virial Theorem 
For a potential energy homogeneous in the coordinates, of degree ,k say, and spatially bounded motion, 

there is a simple relation between the time averages of the kinetic energy,T , and potential energy, .U  
It’s called the virial theorem: 

2 .T kU=  

Proof 

Since 

21
2 , / ,i i i i i i

i
T m v p m v T v= = = ∂ ∂∑    

 

we have 

2 .i i i i i i
i i i

dT p v p r r p
dt
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

 

We now average the terms in this equation over a very long time, that is, take   

( )
0

1lim .f f t dt
τ

τ τ→∞
= ∫

 

Since we’ve said the orbits are bounded in space, and we assume also in momentum, the exact 
differential term contributes 

at final at initial
time time
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i i
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in the limit of infinite time. 

So we have the time averaged 2 /i i
i

T r U r= ⋅∂ ∂∑   ,  and for a potential energy a homogeneous 

function of degree k in the coordinates, from Euler’s theorem: 

2 .T kU=  

So, for example, in a simple harmonic oscillator the average kinetic energy equals the average potential 
energy, and for an inverse-square system, the average kinetic energy is half the average potential 
energy in magnitude, and of opposite sign (being of course positive).  
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