
26. Euler’s Angles 
Michael Fowler 

Introduction 
So far, our analysis of rotational motion has been of essentially one dimensional, or more precisely one 
angular parameter, motion: rotating about an axis, rolling, precessing and so on. But this leaves out 
many interesting phenomena, for example the wobbling of a slowing down top, nutation, and so on. We 
need a well-defined set of parameters for the orientation of a rigid body in space to make further 
progress in analyzing the dynamics.  

The standard set is Euler’s Angles. What you see as you watch a child’s top beginning to wobble as it 
slows down is the direction of the axis—this is given by the first two of Euler’s angles: ,θ φ  the usual 

spherical coordinates, the angle θ  from the vertical direction and the azimuthal angleφ  about that 

vertical axis.  Euler’s third angle, ,ψ specifies the orientation of the top about its own axis, completing 

the description of the precise positioning of the top. To describe the motion of the wobbling top as we 
see it, we evidently need to cast the equations of motion in terms of these angles. 

Definition 
The rotational motion of a rigid body is completely defined by tracking the set of principal axes 

( )1 2 3, ,x x x , with origin at the center of mass, as they turn relative to a set of fixed axes ( ), , .X Y Z  The 

principal axes can be completely defined relative to the fixed set by three angles: the two angles ( ),θ φ  

fix the direction of 3,x but that leaves the pair 1 2,x x free to turn in the plane perpendicular to 3,x the 

angle ψ fixes their orientation.   
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To see these angles, start 
with the fixed axes, draw 
a circle centered at the 
origin in the horizontal 

,X Y plane. Now draw a 
circle of the same size, 
also centered at the 
same origin, but in the 
principal axes 1 2,x x  

plane.  Landau calls the 
line of intersection of 
these circles (or discs) the 
line of nodes. It goes 
through the common 
origin, and is a diameter 
of both circles. 

The angle between these 
two planes, which is also 
the angle between 3,Z x  

(since they’re the 
perpendiculars to the 
planes) is labeled .θ   

The angle between this line of nodes and the X  axis is .φ  It should be clear that ,θ φ  together fix the 

direction of 3,x  then the other axes are fixed by giving ,ψ  the angle between 1x  and the line of nodes 

.ON  The direction of measurement of ,φ ψ  around 3,Z x  are given by the right-hand or corkscrew rule. 

Angular Velocity and Energy in Terms of Euler’s Angles 
Since the position is uniquely defined by Euler’s angles, angular velocity is expressible in terms of these 
angles and their derivatives.   

  

  

  

  

  

  

  

  
  

  

  

  

  

 follow standard physics practice for labeling the direction of 

body axis relative to lab axes ,  is the body rotation 

angle from to the axis in the  plane, about its axis.   

Euler’s Angles 
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The strategy here is to find the angular velocity components along the body axes 1 2 3, ,x x x  of , ,θ φ ψ 

  in 

turn.  Once we have the angular velocity 
components along the principal axes, the 
kinetic energy is easy. 

(You might be thinking: wait a minute, 
aren't the axes embedded in the body? 
Don't they turn with it?  How can you 
talk about rotation about these axes? 
Good point: what we're doing here is 
finding the components of angular 
velocity about a set of axes fixed in 
space, not the body, but momentarily 
coinciding with the principal axes of the 
body.) 

From the diagram, θ  is along the line 

,ON  and therefore in the 1 2,x x  plane: 

notice it is at an angle ψ−  with respect 

to 1.x  Its components are therefore ( )cos , sin ,0 .θ θ ψ θ ψ= −




    

Now φ  is about the Z axis. The principal axis 3x  is at angle θ  to the Z axis, so φ


  has component 

cosφ θ  about 3,x  and sinφ θ  in the 1 2,x x  plane, that latter component along a line perpendicular to 

ON , and therefore at angle ψ−  from the 2x  axis. Hence ( )sin sin , sin cos , cos .φ φ θ ψ φ θ ψ φ θ=




     

The angular velocity ψ  is already along a principal axis, 3.x   

To summarize, the Euler angle angular velocities (components along the body’s principal axes) are: 

 

( )
( )
( )

cos , sin ,0 ,

sin sin , sin cos , cos ,

0, 0,

θ θ ψ θ ψ

φ φ θ ψ φ θ ψ φ θ

ψ ψ

= −

=

=





 





  







  

from which, the angular velocity components along those in-body axes 1 2 3, ,x x x  are: 
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sin sin cos ,

sin cos sin ,

cos .

φ θ ψ θ ψ

φ θ ψ θ ψ

φ θ ψ

Ω = +

Ω = −

Ω = +
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For a symmetric top, meaning 1 2 3,I I I= ≠  the rotational kinetic energy is therefore 

 ( ) ( ) ( )22 2 2 2 2 21 1 1 1
rot 1 1 2 3 3 1 32 2 2 2sin cos .T I I I Iφ θ θ φ θ ψ= Ω +Ω + Ω = + + +  

   

For this symmetrical case, as Landau points out, we could have taken the 1x  axis momentarily along the 

line of nodes ,ON  giving 

( ), sin , cos .θ φ θ φ θ ψΩ = +


  

  

Free Motion of a Symmetrical Top 
As a warm up in using Euler’s angles, we’ll redo the free symmetric top covered in the last lecture. With 

no external torques acting the top will have constant angular momentum ,L


  

We’ll take L


 in the fixed Z direction. The axis of the top is along 3.x   

 Taking the 1x axis along the line of nodes ON  (in the figure on the previous page) at the instant 

considered, the constant angular momentum

( )

( )( )
1 1 1 2 3 3

1 1 3

, ,

, sin , cos .

L I I I

I I Iθ φ θ φ θ ψ

= Ω Ω Ω

= +



  



 

Remember, this new 1x axis (see diagram!) is 

perpendicular to the Z  axis we’ve taken L


 along, 

so 1 1 0,L I θ= =  and θ  is constant, meaning that 

the principal axis 3x  describes a cone around the 

constant angular momentum vector .L


 The rate of 
precession follows from the constancy of 

2 1 sin .L I φ θ=    Writing the absolute magnitude of 

the angular momentum as ,L  2 sin ,L L θ=  

(remember L  is in the Z direction, and 1x  is 

momentarily along ON )  so the rate of precession 

1/ .L Iφ =  Finally, the component of L


 along the 

3x  axis of symmetry of the top is 3 3cos ,L Iθ = Ω  so the top’s spin along its own axis is 

( )3 3/ cos .L I θΩ =   

  

  

  

  

(axis)    

  

  
  

  

  

  

  

  

Free motion of symmetric top: constant  along fixed   
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Motion of Symmetrical Top around a Fixed Base with Gravity:  Nutation 
Denoting the distance of the center of mass from the fixed bottom point P as   (along the axis) the 

moment of inertia about a line perpendicular to the axis at the 
base point is 

2
1 1 .I I M′ = +   

( 1I  being usual center of mass moment.) 

The Lagrangian is ( P being the origin, 3I in direction ,θ φ  )

( ) ( )22 2 21 1
1 32 2sin cos cos .L I I Mgφ θ θ φ θ ψ θ′= + + + −  


  

Notice that the coordinates ,ψ φ  do not appear explicitly, so 

there are two constants of motion: 

( )
( )

3 3

2 2
1 3 3

/ cos ,

/ sin cos cos .Z

p L I L

p L I I I L

ψ

φ

ψ φ θ ψ

φ θ θ φ ψ θ

= ∂ ∂ = + =

′= ∂ ∂ = + + =



 

 



  

That is, the angular momentum about 3x  is conserved, because the two forces acting on the top, the 

gravitational pull at the center of mass and the floor reaction at the bottom point, both act along lines 
intersecting the axis, so never have torque about 3.x  The angular momentum about Z  is conserved 

because the gravitational torque acts perpendicular to this line.  

We have two linear equations in ,ψ φ  with coefficients depending on θ  and the two constants of 

motion 3, .ZL L  The solution is straightforward, giving 

 3 3 3
2 2

1 3 1

cos cos, cos .
sin sin

Z ZL L L L L
I I I

θ θφ ψ θ
θ θ

 − −
= = −  ′ ′ 


   

The (conserved) energy  

 
( )
( ) ( )

2 2 21 1
1 1 2 3 32 2

22 2 21 1
1 32 2

cos

sin cos cos .

E I I Mg

I I Mg

θ

φ θ θ φ θ ψ θ

′= Ω +Ω + Ω +

′= + + + +



  




  

Using the constants of motion to express ,ψ φ  in terms of θ  and the constants 3,ZL L  , then 

subtracting a θ  independent term to reduce clutter, ( )2
3 3/ 2 ,E E Mg L I′ = − −  we have 

 ( ) ( ) ( ) ( )
2

321
1 eff eff2 2

1

cos
, 1 cos .

2 sin
ZL L

E I V V Mg
I

θ
θ θ θ θ

θ
−

′ ′= + = − −
′



   

 

  

  

  

  

  

c.m. 
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The range of motion in θ  is given by ( )eff .E V θ′ >  For 3 ,ZL L≠  ( )effV θ goes to infinity at 0,θ π= . It 

has a single minimum between these points.  (This isn’t completely obvious—one way to see it is to 

change variable to cosu θ= , following Goldstein. Multiplying throughout by 2sin θ , and writing 
2 2 2sin uθ θ =

  gives a one dimensional particle in a potential problem, and the potential is a cubic in .u  

Of course some roots of  ( )effE V θ′ = could be in the unphysical region 1.u > In any case, there are at 

most three roots, so since the potential is positive and infinite at 0, ,θ π= it has at most two roots in the 

physical range.) 

From the one-dimensional particle in a potential analogy, it’s clear that θ  oscillates between these two 

points 1θ and 2.θ  This oscillation is called nutation.  Now ( ) 2
3 1cos / sinZL L Iφ θ θ′= − could change 

sign during this oscillation, depending on whether or not the angle ( )1
3cos /ZL L− is in the range. 

Visualizing the path of the top center point on a spherical surface centered at the fixed point, as it goes 
around it oscillates up and down, but if there is this sign change, it will “loop the loop”, going backwards 
on the top part of the loop.  

 

Steady Precession 
Under what conditions will a top, spinning under gravity, precess at a steady rate?  The constancy of 

3, ZL L  mean that 3 prcos ,  and φ θ ψ φΩ = + Ω = 

  are constants.  

The θ  Lagrange equation is 

( )2
1 1 3sin cos cos sin sinI I I Mgθ φ θ θ φ θ ψ φ θ θ′ ′= − + +   


  

For constant ,θ  0,θ = so, with 3 prcos ,  and ,φ θ ψ φΩ = + Ω = 

    

2
1 3 3cos 0.pr prI I Mgθ′Ω − Ω Ω + =  

Since this is a quadratic equation for the precession rate, there are two solutions in general: on staring 
at a precessing top, this is a bit surprising!  We know that for the top, when it’s precessing nicely, the 
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spin rate 3Ω  far exceeds the precession rate .prΩ   Assuming 1 3,I I′  to be of similar size, this means the 

first term in the quadratic is much smaller than the second. If we just drop the first term, we get the 
precession rate 

 ( )precess (slow) 3 precess
3 3

, .Mg
I

Ω = Ω Ω
Ω


   

Note that this is independent of angle—the torque varies as sin ,θ  but so does the horizontal 
component of the angular momentum, which is what’s changing. 

This is the familiar solution for a child’s fast-spinning top precessing slowly.  But this is a quadratic 
equation, there’s another possibility: in this large 3Ω  limit, this other possibility is that prΩ  is itself of 

order 3Ω , so now in the equation the last term, the gravitational one, is negligible, and  

precess (fast) 3 3 1/ cos .I I θ′Ω ≅ Ω  

This is just the nutation of a free top!  In fact, of course, both of these are approximate solutions, only 
exact in the limit of infinite spin (where one goes to zero, the other to infinity), and a more precise 
treatment will give corrections to each arising from the other.  Landau indicates the leading order 
gravitational correction to the free body nutation mode.  

Stability of Top Spinning about Vertical Axis 
(from Landau) For 30, , 0.ZL L Eθ θ ′= = = =  Near 0,θ =   

 

( ) ( ) ( )

( )

( )

2
3

effective 2
1

22 21
23 21

22
1

2 21
3 1 2

cos
1 cos

2 sin

2

/ 8

ZL L
V Mg

I

L
Mg

I

L I Mg

θ
θ θ

θ

θ
θ

θ

θ

−
= − −

′

≅ −
′

′= −







  

The vertical position is stable against small oscillations provided  2
3 14 ,L I Mg′>  or 2 2

3 1 34 / .I Mg I′Ω >   

Exercise: suppose you set the top vertical, but spinning at less than 3 critΩ , the value at which it is just 

stable.  It will fall away, but bounce back, and so on. Show the maximum angle it reaches is given by 

( ) 3 3 critcos / 2 / .θ = Ω Ω   
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