32 Magnetization and the Field H
Magnetization
Just as dielectrics respond to an imposed electric field by becoming polarized, that is, creating a local electric dipole density so an imposed magnetic field induces what is equivalent to a magnetic dipole density, very small in most materials but very large in the ferromagnetic materials considered here. This dipole density, is called the magnetization. It is a more complicated phenomenon than polarization, we’ll look at it in more detail in the next lecture. For now, though, we’ll just assume that a small volume of material acquires a magnetic dipole moment identical in character to the dipole moment of a small local current distribution, and therefore (as discussed in the previous lecture) having a field with vector potential
For a more general magnetostatic system having steady electric currents plus some magnetization density, the total vector potential has contributions from both, so integrating over the whole space:
We can transform that second contribution (from the magnetization density) to an equivalent current distribution as follows:
and integrating by parts (assuming the magnetization is zero at infinity) puts the gradient operator on to the magnetization (the sign change is compensated by switching the order of ) giving
.
This can be interpreted as representing the magnetization by an effective current density
so we can write (adding the subscript meaning free, to the ordinary macroscopic currents):
Remember we began from the Helmholtz expression
so
Example: think of a uniformly magnetized cylinder bar magnet, with no free currents. Where is nonzero ? On the cylindrical surface. Convince yourself it's equivalent to a solenoid.
The Field H
First a reminder: Recall that in electrostatics the fundamental field was the electric field but in analyzing the electric field in continuous media it proved useful to introduce another field defined by
being the local polarization of the medium. A spatially varying polarization generates a nonzero charge density (as was discussed in detail earlier) and consequently contributes to the electric field.
The field is the part of the electric field whose divergence comes from just the free charges, with no contribution from those rearranged charges bound in the polarized molecules. But that is not the end of the storyfrom Helmholtz’ theorem, we know that there is another source term in the equation for the term. No such term contributed to since in electrostatics.
Now for the parallel in magnetostatics: The fundamental magnetic field is with curl generated by macroscopic electric currents and by magnetized matter. It is therefore natural to define another field (analogous to ) that is the just the part of the magnetic field having curl generated by the actual macroscopic currents.
Recall now the definition of the "magnetic currents":
Now from Helmholtz’ theorem and
If we define the new field by
then
from which one might be tempted to think that is just given by the same expression as , but with the term dropped.
However, this is wrong. The expression for above comes directly from the Helmholtz theorem, but it's only half the usual Helmholtz formula, which has another term, the div term, that vanished for since everywhere.
In contrast, the Helmholtz expression for has to include a div term, because from which is definitely nonzero, for example on surfaces of magnetized material.
Therefore,
As an example, consider a uniformly magnetized solid. The second integral becomes a surface integral of (check by using the divergence theorem for a small pillbox on the boundary). This is just like the discussion of the uniformly polarized sphere in electrostatics, which could be visualized as two uniform spheres of charge, one positive and one negative, slightly displaced relative to each other in the direction of the polarization. Exactly the same analysis works here, giving a surface layer of “magnetic pole” of intensity . If there are no free currents, the field comes entirely from this “magnetic pole distribution” just as the field from a polarized dielectric comes from a surface bound charge distribution. So here is the gradient of a magnetic scalar potential.
Jackson’s Unfortunate Field Notation
At the bottom of page 192, Jackson tells us that is the “magnetic field”, he mentioned earlier (p 174) that is sometimes called the magnetic induction, and that’s what he calls it. He does add (p 193): “We emphasize that the fundamental fields are and ”
What is he thinking?
It seems likely he’s thinking like a magnet engineera typical electromagnet has a solenoid with iron inside. If you take out the iron, and supply a current, there will be a magnetic field. (Jackson’s ) But, practically speaking, it’s probably not strong enough for what you want. So you put back in the iron, and the induced magnetism gives you a far bigger fieldJackson’s inductiontypically hundreds or thousands of times stronger, in fact the original field is now just a tiny contributionalthough of course crucial. (Introducing the iron changes too, but we're just looking at motivation here.)
The utility of from a practical point of view is that it is easy to control: it depends completely on voltages and currents easily controlled from outside. (In contrast, the electrostatic field is much less easily managed: it depends on free charges, notoriously leak-prone.)
The problem with Jackson's choice of notation is that you’re stuck with the word “induction” to describe, say, the magnetic field around a long straight wire carrying a current, where there’s nothing being induced.